This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of
to make the world’s books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was nevel
to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domair
are our gateways to the past, representing a wealth of history, culture and knowledge that’s often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book’s long journey fro
publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belon
public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have take
prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

+ Make non-commercial use of the fild&e designed Google Book Search for use by individuals, and we request that you use these fil
personal, non-commercial purposes.

+ Refrain from automated queryirigo not send automated queries of any sort to Google’s system: If you are conducting research on m:
translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encc
use of public domain materials for these purposes and may be able to help.

+ Maintain attributionThe Google “watermark” you see on each file is essential for informing people about this project and helping ther
additional materials through Google Book Search. Please do not remove it.

+ Keep it legalWhatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume |
because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users
countries. Whether a book is still in copyright varies from country to country, and we can’t offer guidance on whether any specific
any specific book is allowed. Please do not assume that a book’s appearance in Google Book Search means it can be used in al
anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google’s mission is to organize the world’s information and to make it universally accessible and useful. Google Book Search helps
discover the world’s books while helping authors and publishers reach new audiences. You can search through the full text of this book on
athttp://books.google.com/ |



http://books.google.com/books?id=6gwEAAAAQAAJ&ie=ISO-8859-1&output=pdf




5. 719
















NATURAL PHILOSOPHY

FOR

BEGINNERS.

SECOND EDITION, IMPROVED.






NATURAL PHILOSOPHY

FOR BEGINNERS.

BEING FAMILIAR ILLUSTRATIONS

OF THE
LAWS OF MOTION AND MECHANICS.

INTENDED

AS A TEXT-BOOK FOR SCHOOLS AND SELF-] lNSTRUCW )
AS A COMPANION TO THE LECTURE-ROOM, ’\7 -
OR FOR MODEL-SCHOOLS. ’
¥

ILLUSTRATED BY ENGRAVINGS.

SECOND EDITION, REVISED AND IMPROVED.

LONDON:
JOHN W. PARKER, WEST STRAND.

M.DCCC.XLV.






ADVERTISEMENT

TO

THE SECOND EDITION.

In this Edition many important corrections have
been made, and some parts re-written. The arrangement
adopted is the same as that of the first edition; as it
was thought, that any departure from the original
plan might occasion inconvenience in those schools in
which the first edition has hitherto been used.

Mavy 1845,






CONTENTS.

INTRODUCTION .......... cessssanene tesrareessssnnaones ereeevecane xi

CHAPTER L
Inertia.—Matter incapable of spontaneous change.—Familiar

Examples of Inertia.—Force.—Resistance.— Various kinds
of Motion.——MomentuM .....ceeevrereeecrsescassessnscrssossessssans 1

CHAPTER II

The First Law of Motion—Free Motion straight as well as
uniform.—Centripetal Force.—Centrifugal Force.—The Pla-
nets illustrations of Circular Motion.—Familiar Examples of
Centrifugal Force.—Matter unable of itself to change the
Direction of Motion ..c...ceeuveeeiiiiiiiiiiiiiiiiinniiiiiiiennnnnn. 8

CHAPTER III.

The Secdnd Law of Motion.—Experimental llustration of the
Parallelogram of Forces.—Familiar Examples of Compound
Motion.—Components and Resultants..—Machine for illus-
trating Compound Motion.——Examples of the Composition
and Resolution of Force.—Boat acted upon by the Wind and
Tide.—Motions of Fishes.——Flight- of Birds.—Equestrian -
Feats.—Importance of a Knowledge of the Composition and
Resolution of Force.— The Third Law of Motion.—Familiar
Examples of Action and Reaction.——Percussion of Inelastic
Bodies.— Percussion of Elastic Bodies....................o.c.... 12



viil CONTENTS.

CHAPTER 1V.

PAGE

Gravity.—Weight.—Phenomena of Falling Bodies.—Example
of Guinea and Feather.—Increased Velocity of Falling Bo-
dies.—Uniformly accelerated motion.—Attwood’s Machine.—
Gravity acts upon all bodies at all times.—Examples.—
Application of the Laws of Falling Bodies to ascertain the
depth of a Well.—Familiar Illustrations of accelerated Ve-
locity.—The Battering-ram.——An Engine for driving Piles.
—Bodies uniformly retarded by the force of Gravity in their
Ascent.— The Pendulum.—Isochronism........................

CHAPTER V.

Curvilinear Motion.— Water issuing from a hole in a Cask.—
Projectile Force.—Ball shot from a Cannon.—Parabola......

CHAPTER VL

Centre of Gravity.—Line of Direction.—— Examples.—Centre of
Gravity sometimes the Centre of Magnitude or Dimension.—
Method of finding the Centre of Gravity.—Leaning Towers.
—Examples of the Line of Direction.—Illustration of raising
the Centre of Gravity.—~Wagon on Inclined Road.—Ex-
amples of lowering the Centre of Gravity.—Bucket.—Vi-
brating Figures.—Familiar Examples.—Motion of a Quad-
ruped.—Rope-dancers.—Centre of Gravity not always within
the Body.—Motion on Inclined Plane.—Mechanical Decep-
tions of Cylinder and Double Cone.—Spinning-top.—Oval
Bodies.—S8tability of a Body.—Pyramid.——Method of find-
ing the Centre of Gravity of Squares, Parallelograms, and
Circles.—The Centre of Gravity also the Centre of Inertia.
—Examples.—Centre of Gravity of three or more bodies.—
Triangle. ..c..cooevviiiiiiiiiiiiiiiii e

51



CONTENTS. ix

CHAPTER VIIL

PAGE
The Mechanical Powers.—First Kind of Lever.—Law of Vir-
tual Velocities.—Mechanical efficacy of a Machine.— See-
saw.—Handspike or Crowbar, &c.—Balance. — Steel-yard.
~—Chinese Steel-yard.— Danish Balance.— Apparatus for
making Experiments upon the Lever.—Easy Exercises.—
Second Kind of Lever.—Sedan-Chair.—Cask slung from a
Pole.—Cutting-knife—Door turning upon its hinges, &c.
—Third Kind of Lever.—Foot-board of the Turning-lathe.
—Limbs of Animals.—Sheep-shears, &c.—The difference
between Levers of the Second and third Kind.—7he Com-
pound Lever.—~Familiar Examples.—— The Bent Lever.—
Various Examples.—Illustration of Oblique Action of the
Power and Weight.—Rectangular Lever.—Bent Lever Ba-

lance.—Beam supported upon two Fulcrums. .................. 65

CHAPTER VIIIL

The Wheel and Axle.—~Wheel and Compound Axle.—Section
of this Machine.—Exercises.—Ratchet Wheel.—Virtual Ve-
locities.—Various Applications of the Wheel and Axle.—
Capstan.— Compound Wheel-work.—Illustration.— Straps
or Cords.—Watch and Clock-work.—Action of the Fusee.—
Water-wheels. — Overshot Wheel. — Undershot Wheel.—
Breast Wheel.— Windmills.— Horse Power.—Cranes.—Cir-
cular Cages.—Treadmill.Roasting-jack.—Extensive use of
the Wheel and Axle. ........cccceeveveeiiieiiiincnonnnnnnnnnennnnans 97

CHAPTER IX.

The Pulley or Cord.— The Fized Pulley.—Familiar Examples.
— Moveable Pulleys.— Oblique Direction.— Examples of
Pulleys with a single rope.—Pulleys used on board of Ships.
~Smeaton’s Pulley.—White’s Pulley.—Spanish Bartons.—
Examples of Pulleys with several ropes.—Virtual Velocities.
—Friction Rollers. ..........cccoerivivinunnnnnrenneennneeneenciiennn, 116



X CONTENTS.

CHAPTER X.-
PAGE
The Inclined Plane.—Examples.—Application of the Com-
position and Resolution of Forces.—Example of a Power
acting obliquely.—Two Inclined Planes.—Virtual Velocities.
—~Inclination of Roads.—Exercise.—Inclined Plane used by
the Ancients.—Stairs.——Launching of a Ship. ........cccccueet 130

CHAPTER XI.

The Wedge.—Mechanical efficacy.—Impact.—Familiar Illus.
trations.—Result of some Experiments made in the Dock-
yard at Portsmouth..........ccocvvvanneiirriiiiiiinnenioniiennienens 138

CHAPTER XII

The Screw.— Modification of the Inclined Plane.—Nut.—
Illustration of the Screw when the Nut is fixed — when
moveable.—The Screw when used with a Lever or Winch.
—Standing-press used by Bookbinders.—Hunter’s Screw.—
Endless Screw.—Various Applications of the Screw.—Mi-

CHAPTER XIII.

Friction.—Means used to Diminish Friction.—Friction Wheels.
—Experiments.——The Laws of Friction illustrated by the aid
of the Inclined Plane.—All the Mechanical Powers subject
to Friction................ seresecsnrnsasssansnasssssnsseorssrsntessersones 151

Explanation of Scientific Terms.........ccc..ceerrrnniiirerineieennn 158



INTRODUCTION.

TaE study of Natural Philosophy has of late years
been so generally applied to the practical concerns of
life, that it is now considered as an essential branch
of education; but besides the advantage derived from
a knowledge of the many interesting facts connected
with its practical application, it has the still greater
advantage of being the means of disciplining the mental
faculties by creating habits of attention and correctness,
and by combining an exercise of the understanding
with that of the memory. Nor should the influence
of this study, in a moral point of view, be lost sight
of ; for it produces a sincere and disinterested love of
truth, destroys the effects of prejudice, and if properly
directed, cannot but increase. our admiration of the
wisdom, the, goodness, and the power of the Creator;
and .although proofs of the attributes of the Deity
abound in every direction, yet, from the very circum-
stance of their. being so abundant, the mind is apt to
become callous to. their. beauties. ‘‘Now Science,” says
the Rev. H. Moseley, “opens to s on these points zew
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views infinitely more striking than any that can be
seen by the untutored intellect; views calculated to
impose gratitude on the most insensible, and to bend
in worship the minds of the most stubborn.”

Of all the departments of science there is, perhaps,
none of more practical utility than Mechanics, or from
which mankind have derived greater advantages: a
knowledge of this science is one of those things that
serves to distinguish civilized nations from savage ; for
were man ignorant of the various arts which depend
upon the Mechanical Powers, he would be but little
superior in point of enjoyment to the beasts of the
forest, and much their inferior in point of security.
From this science the works of art derive much of
their beauty and value: by its aid we are enabled to
improve every power and force in nature, and the
motions of the elements, water and air, are rendered
subservient to the various purposes of life. As a
branch of early instruction, there is perhaps no kind
of study better adapted to the taste and capacity of
youth, or more replete with utility and entertainment.
“ Every-body talks of the lever, the wedge, and the
pulley; but most people perceive that the notions
which they have of their respective uses are unsatis-
factory and indistinct ; and many endeavour at a late
period of life to acquire a scientific and exact know-
ledge of the effects that are produced by implements
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which are in everybody’s hands, or that are abso-
lutely necessary in the daily occupation of mankind*.”

The mental advantage derived from a practical ap-
plication of the knowledge acquired in the school-
room to the common affairs of life, need scarcely be
snggested to the tutor; Mechanical Science affords
numerous opportunities for thus exercising the inge-
nuity of boys. The apparatus necessary to *collect
specimens” in this branch of science is mot costly,
being nothing more than an ordinary exercise of ob-
servation and attention; nor do the “specimens” so
collected need any museum or glass case, as the only
storehouse required is that of the pupil's mind. If
the student has a desire to apply the knowledge he
possesses to what daily passes before his eyes, he
cannot take an hour's walk without meeting with
some illustrations of this science. A visit to a factory
is rendered doubly interesting by a knowledge of the
principles of Machinery ; nor will an intelligent boy
consider his tutor a bore even in the play-ground if
a principle of science be pointed out to him while
playing at trap-ball or ring-taw. It was by observing
trivial effects and studiously endeavouring to trace
these effects to their cause, and to classify them under
acknowledged principles, that Sir Isaac Newton was
led to the discovery of universal gravitation; for upon

* Edgeworth’s Practical Education.
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observing an apple fall to the ground, he thought it
possible that the same law which caused its descent
might also keep the planets in their respective positions,
and this he found to be the case. The laws of the
pendulum were discovered by Galileo merely from his
observing a lamp swinging from the ceiling.
Althongh numerous elementary works on the Natural
Sciénces have been published of late years, many of
which have been deservedly popular (such, for instance,
a8 Mrs., Marcet’s Conversations, and Joyce’s Scientific
Dialogues), it is, nevertheless, generally admitted that
these works are more adapted for home education than
for class-books in schools. The present elementary
treatise is an humble attempt to supply what the
author deemed a desideratum,—viz. a work suitable
for those commencing Natural Philosophy in Schools,
devoid, on the one hand, of Mathematical formule,
and requiring, on the other, rather more exercise of
the intellect than is necessary for the comprehension
of popular introductions similar to those above named.
In compiling the present work, the Author’s aim has
chiefly been to explain the principles of Mechanical
Science with precision and simplicity, and to illustrate
them with apt and interesting examples; the demon-
strations require no further knowledge of Mathematics
than the elementary rules of Arithmetic, and care has
been taken that the learner should meet with no tech-
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nical difficulty in his progress. It was originally in-
tended to accompany a set of apparatus for teaching
Mechanics, sold by Messrs. Taylor and Walton, Lon-
don; and with this idea a considerable number of the
diagrams were copied from the set, but during the
progress of the work it was found n;aoeaary to intro-
duce many other examples, which, although in many
cases illustrative of the same principles, were not deem-
ed necessary to be included in a set of Mechanical
Models, as they could be readily understood by atten-
tion to diagrams. But the work is mnot confined to
the explanation of the Models above named: it may
be used with any other set of Mechanical Apparatus,
or even where the Pupil has not the advantage of
Models; and the Author hopes it will be found a
useful compendium for Model Schools, and Mechanics’
Institutions, as he has been careful to embrace all the
leading principles of the Science, and to render the
subject as entertaining as he was able to the opening
mind.

To those who possess a knowledge of algebraical for-
mul®, an attentive study of the works of Whewell,
Gregory, and Pratt, in English, and Poisson and Poin-
sot in French, is recommended; and by those who
wish to pursue the study of Mechanics further, without
the aid of mathematical knowledge, the Lectures of
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Dr Young*, the Treatises in the Library of Useful
Knowledge, in the Cabinet Cyclopedia, and Dr Arnott’s
Physics, will be found well worthy of a careful perusal.
To the three latter works the Author has to acknow-
ledge himself indebted for some interesting examples
and diagrams, as well as to & work by Professor Che-
vallier of Durham.

The Author cannot conclude these prefatory remarks
without expressing his sincere thanks to the Rev. W.
Cook, of Unjversity College, for his kindness in looking
over the work before publication, and for his many

_useful suggestions.

* A new edition of this work, completing the different subjects
to the present time, edited by the Rev. P. Kelland, M.A. and
Thomsas Webster, M.A. is in course of publication.



MECHANICS.

CHAPTER 1.

MEecHANICS may be considered as the basis or ground-
work of all the other Natural Sciences, as its principles
are founded on the laws of Motion, and without a
knowledge of these laws it will be impossible to un-
derstand the effects or calculate the consequences of the
motions affecting solids and fluids.

The term Mechanics is derived from the Greek word
Mpnxavi, signifying a Machine. It is usual in mathe-
matical treatises to divide this science into two parts,
called Statics and Dynamics. Statics (from the Greek
word Z=rdTixos, stopping) treats of the powers which
preserve bodies in a state of rest; and Dynamics (from
the Greek word Avvaus, power or force) relates to the
causes of movement, or the forces producing motion.
In the present elementary work these two branches will
be explained in conjunction, as the difference between
the states of a body at rest and a body in motion is
merely the effect of a different mode of action of the
same cause. It will therefore be necessary for the stu-
dent to be well acquainted with the effects of motion
and the gravitation of bodies previously to his entering
upon the study of the Mechanical Powers.

ON MOTION AND ITS LAWS,
. Motion is the act of a body changing its place; or
the contrary of remaining at rest.
A body when in a state of rest is of itself unable to
move, and when in motion it is also unable of itself to

134 B
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come to a state of rest ; this quality of matter has been
called Inertia (from a Latin word which implies in-
activity). We know from experience that a rock on
the surface of the globe does not change its position in
respect to other things on the earth; it having of itself
no power to move, would for ever remain at rest, unless
moved by some external force. It is equally true that
matter has no power to bring itself to rest when once
put in motion; for having no life, either state must de-
pend entirely upon external circumstances, matter being
passive both to motion and to rest. That bodies con-
tinue in the state of motion or of rest in which they
happen to be, so as to require force to change the state,
will be seen from the following illustrations :

A horse on attempting to move a heavily-laden cart,
has to overcome its inertia; but this once effected, he
continues to draw the burden with ease which at first
he could with difficulty move. On a stage-coach start-
ing, the passengers are thrown backward, owing to their
inertia opposing a resistance to their bodies acquiring at
once the motion of the vehicle, and therefore tends to
leave them behind; when the coach stops, the oppo-
site result ensues. A man standing at the stern of a
boat, if he is not careful, will fall into the water when
the boat begins to move; and on the stopping of the
boat, he will fall forward, A man jumping from a
stage-coach at speed is in great danger of falling after
his feet reach the ground, his body having acquired as
much velocity as if he had been running with the speed
of the coach. A person about to leap over a ditch com-
mences running at some distance from it, that his body
may acquire a motion and help him over. An eques-
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trian standing on the saddle of a horse at full gallop,
will step from it to the back of another horse galloping
alongside at the same rate with as much ease as if the
horses were standing still : the man has the same velo-
city with the horse that gallops under him, and keeps
this velocity while he steps to the back of the other.
If the other were standing still, the man would fly over
his head; and if he were to step from the back of a
horse that is standing still to the back of another gal-
loping past him, he would be left behind. In the same
manner a slack-wire dancer tosses several balls from
‘hand to hand while the wire is in full swing; the ball,
swinging along with the hand, retains the velocity, and
when in the air follows the hand, and falls into it when
it is in the opposite extremity of its swing. Likewise
a ball dropped from the mast-head of a ship that is sail-
ing briskly forward, falls at the foot of the mast, as it
retains the motion which it had while in the hand of
the person who dropped it, and follows the mast during
its fall.

The property of inertia is simply shewn by the fol-
lowing experiment :—Balance a card upon the tip of the
finger, and place a shilling on it; let the edge of the
card be smartly struck, and it will dart off from beneath
the shilling, but the shilling, by its inertia, will remain
resting on the finger: this arises from the inertia of the
shilling being greater than the friction of the card.

From these examples it will be readily seen that a
body at rest would never move if force were not ap-
plied : we must not however infer that rest is the na-
tural state of all bodies, because matter does not put
itself in motion, as a few examples will shew that

B2
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motion is a8 much the natural state of matter as rest,
and that both rest and motion depend on the resistance
or impulse of external causes; it may also be seen that
there are great differences in the duration of motions,
and that these differences.arise chiefly from friction and
the resistance of the air. _

If a smooth ball be rolled along the ground it will
soon stop, owing to the ground being rough; if it be
rolled upon a smooth bowling: green, it will continue
longer in motion, because the impediments to its pro-
gress are less; but if it be rolled on a smooth and level
sheet of ice, it hardly suffers any retardation from fric-
tion, and if the air be moving with it, will reach to a
very considerable distance. A large spinning-top, with
a fine hard point, set in motion in a vessel from which
the air has been exhausted, will spin for a length of
time, because the air offers no impediment to its motion.
A pendulum set in motion in a vacuum will vibrate for
a considerable time, having merely to overcome a slight
friction at its point of suspension. Let a small brass
wheel of uniform thickness be put in motion round a
pin passing through its centre, let it be so regularly
constructed that its different parts will just balance
each other about its centre, so that its motion round
* the pin be neither increased nor diminished by the force
of gravity®. The only causes, therefore, which retard
its motion, are, the friction upon its axis, and the re-
sistance of the air. If the friction be diminished by
placing the axis itself upon friction wheels, its motion

* By the force of gravity is meant the tendency which all bodies
have to fall towards the earth ; this will be explained in the Chap-
ter on Gravitation.
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will be continued for & much longer time than when it
revolves simply upon its axis. By placing the whole
apparatus in the exhausted receiver of an air-pump the
resistance of the air is removed ; and then it is found to
revolve with a velocity nearly uniform for a very con-
siderable length of time.

From these examples it appears, that when a body
is once put in motion by the agency of some force, the
continuance and regularity of its motion is always in-
creased as we diminish the number of impediments
arising from friction, resistance of the air, and other
retarding causes. As this is the case in every instance
which comes under our notice, we conclude that if a
body could be placed under such circumstances as to
be entirely free from the operation of these causes, its
motion would then become altogether uniform and per-
petual. Any cause which moves a body when at rest,
or changes the motion of a body already in motion, is
called Force: it is often found convenient to represent
forces by numbers, or lines drawn in the direction in
which the forces act; the amount of force may at the
same time be represented by the length of the line.
‘Whatever opposes motion so as to retard the moving
body, destroys its motion, or causes it to move in a con-
trary direction, is called Resistance.

" Motion varies according to the manner in which the
force acts. Common motion is when two or more bodies
move together: a man standing on the deck of a ship
when sailing has common motion with the ship.

Motion is said to be Adsolute when a body is in
motion with respect to a fixed object: a man walking
from one place to another, or a ship sailing through the
‘water, are examples of absolute motion. .
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Relative motion is when a body changes its position
with respect to another body also in motion: thus, a
man sitting in a coach moving along the road is re-
latively at rest, that is, with respect to the coach; but
absolutely in motion, being moved with the coach from
one place to another: he is also relatively at rest with
respect to the other passengers in the coach, whether
the coach be at rest or in motion. Where there has
been an actual change of place in the common meaning
of the term, the motion which produced it is termed
absolute motion; whereas on the contrary, when the
situation has been only relatively changed by an altera-
tion in the position of surrounding bodies, it is said to
be relative.

The Velocity of a body is the rate of speed at which
it moves; and when a body is moving uniformly, its
velocity is measured by the space or distance over which
it moves, divided by the time spent in that motion :
thus, if a body in three seconds, with an invariable
motion, pass over thirty feet, its velocity is said to be
ten feet per second.

Motion is said to be uniform when the moving body
passes over equal spaces in equal times: if gradually
increasing, it is said to be accelerated ; and, if gradually
decreasing, rotarded.

Momentum is the force or power with which & body
in motion strikes against another body, and it is mea~
sured by the quantity of matter or weight of the body
multiplied by its velocity ; therefore the force necessary
to produce a certain degree of velocity to a ball weigh-
ing ten ounces, is five times as great as would produce
the same effect on a ball at rest weighing only two

ounces, for the larger ball moves with five times the force
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of the smaller ball, although the velocity is the same in
both. But if the velocity of the smaller ball were to be
augmented five times, the momenta or quantities of mo-
tion would then be equal; that of the larger ball being
expressed by ten multiplied by one, and that of the
smaller by.two multiplied by five. It follows, therefore,
that the momentum or guantity of motion in any body
may be increased, either by increasing the quantity of
matter moving with a certain velocity, or by keeping
the same quantity of matter and increasing the velocity:
if a man with a certain force throws from him a weight
of fifty pounds to the distance of ten feet, he must apply
twice the force to throw a weight of one hundred
pounds to the same distance, or to throw the fifty-pound
weight twice as far; but if he employs no more force
than he did before, he will throw the hundred-pound
weight only to the distance of five feet, and in that case
the two bodies will have the same momenta, because
60x10=100 x5. Hence a small body may have as
much motion as a large one, however disproportionate
the bodies may be, provided that their velocities be
reciprocally proportionable to their masses, that is, if
the small body has as much more velocity than the large
one, as it has less matter. It is for this reason that
battering-rams have been disused in war since the inven-
tion of gunpowder; for a cannon-ball weighing thirty-
gix pounds, shot from a cannon, will produce the same
effect as a battering-ram weighing fifty thousand pounds,
provided the cannon-ball moves as many times swifter
ag it has less matter than the battering-ram,
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CHAPTER IIL

THE LAWS OF MOTION.

THE simplest principles to which all motions can be
reduced are called the T'Ares Laws of Motion.

The First Law of Motion.

Every body continues in its state of rest or of uniform
motion in a straight line, unless compelled to change that
state by forces impressed upon it.

It will be obvious to the mind of the student that

this law depends upon what is called the Jnertia of mat-
ter (already explained at page 2), by which it is to be
understood not only that matter will not move without
the application of some external force, but also that
when once in motion it will maintain that state until it
is stopped by some other force. ~'Whenever, therefore, a
body is put into motion, that motion would continue for
ever in a straight line were it not stopped or impeded by
some external force, such as the resistance of the air,
the force of gravity, or friction; for the more these
hindrances are diminished, the longer the motion conti-
nues, and we therefore conclude that if they were
entirely removed the motion would never cease.
- As a body moving freely cannot vary its velocity
without a cause, neither can it alter its course without
a cause; free motion, therefore, is straight as well as
uniform. The simplest idea of straight motion is that
of a bullet or arrow shot directly up or down.

A stone in a sling, the moment it is set at liberty,
darts off in a straight direction, as an arrow from a
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‘bow, or a bullet from a gun. A body moving in a
circle, or curve, is constrained to do what is contrary
to its inertia, and consequently it must be acted upon
by at least two forces. The force required to keep the
body in the bent course is called centripetal, or centre-
seeking force ; while the inertia of the body, giving it
a tendency to move outwards or in a straight line, is
called the centrifugal, or centre-flying force.

In all cases centrifugal force tends to make bodies
under its influence recede from a central point; and
when it acts in conjunction with a centripetal force, the
effect will be revolving motion : this is agreeable to the
first law of motion, that every body in motion will con-
tinue to move on in a straight line with a uniform velo-
city unless another force act upon it.

The planets are illustrations of circular motion; the
moon, for instance, has a constant tendency to the earth
by the attraction of gravitation, and it has also a ten-
dency to proceed in a straight line, and by the joint
action of these two forces it describes a circular motion.

‘When a ball is shot from a cannon, it descends to the
earth in a curved direction, which is caused by the
attraction of gravitation; and, but for this force and
the resistance of the atmosphere, it would continue to
move onward in a straight line.

A tumbler filled with water and placed in a sling
may be gradually made to revolve rapidly in a circle
without a drop of the water being spilled; and even
when the mouth of the glass is presented downward,
the water will still be retained in it; as by its inertia,
or centrifugal force, it tends more away from the centre
of motion, and ¢owards the bottom of the tumbler than
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towards the earth by gravity. A half-formed vessel of
soft clay placed in the centre of the potter’s table—which
is made to whirl, and is called his wheel,—opens out or
widens merely by the centrifugal force of its sides, and
thus assists the workman in giving its form.

‘By reason of centrifugal force equestrians perform
their feats of horsemanship in a small ring; both man
and horse incline their bodies inwards to counteract the
tendency which the centrifugal force has of impelling
them outwards. Carriages are not unfrequently upset
in turning & corner quickly: the body of the vehicle,
owing to its inertia, has a tendency to move forwards,
while the wheels are suddenly pulled round by the
horses into a new direction.

The laws of motion are pleasingly exemplified in
skating: a man when skating with great velocity will
find himself obliged to lean considerably inwards on
rounding a corner,—this gives rise to the variety of at-
titudes displayed by the expert skater.

Matter, owing to its inertia, is unable of itself to
change the direction of motion. We have shewn above
that if a body were impelled by a single force, and no
resistance were made to it, it would continue to move
onwards in the right line in which it was first moved :
that line is called the line of direction of its motion,
and it will not change this direction unless acted upon
. by another force.

‘We have hitherto considered forces acting only in the
same straight line; but this is not always the case, for
it frequently happens that the new force applied makes
an angle with the former force, as in the annexed figure.
Suppose a body to be moving along the line ACB,
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and when it has arrived at C, Fig.1.
suppose another force applied in E

the direction ED ; there will ne- , c B
cessarily be an alteration of the

direction in which the body will

move, that is towards ED. As it cannot move
along A B, on account of the force ED ; nor along ED,
on account of the force AB; it follows that it will
move in some new direction between them, as CH:
and it will be shewn in the following chapter, that, in
proportion as the new force is greater or less than the

former, the line CH will be nearer to or farther from
the line ED.
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CHAPTER III.
THE SECOND LAW OF MOTION.

When any force acts upon a body in motion, the change
of motion whick it produces is in the direction, and pro-
portional to the magnitude, of the force which acts.

The second law of motion is of great importance, as
it relates to compound motion, and the direction of a
body acted on by two forces in different but not con-
trary directions.

If a body be acted upon by two equal weights, or
equal forces of any kind in opposite directions, the body
will remain at rest ; as for instance, the scales of a com-
mon balance, each loaded with a weight of one pound,
will be at rest or in equilibrium. In this case equi-
librium is maintained by equal forces acting in opposite
directions, and this leads to the consideration of equi-
librium maintained by the application of these forces.
The following is an experimental illustration of what is
called the Parallelogram of Forces, which is a principle
of considerable importance in Mechanics, as it enables
us to calculate the combined action of moving powers,
as well as their relative effect.

Let two small wheels, £, F, (fig. 2,)* Fig. 2.
with grooves in their edges to receive ©
a thread, be attached to an upright L.
board ; let the thread be passed over
them, having the weights, B, C, fixed
to its extremities. From any part of
the thread between the wheels, as at

® In this and the following illustrations no friction is supposed
to take place.
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H, let such a weight A be suspended as will draw
down the thread so as to form an angle, EHF, and sustain
the weights in equilibrium. In this state it is evident
that the weight A4, acting in the direction HA, will
balance the weights B and C, acting in the directions
HE, and HF, and these two.forces must be equivalent
to a force equal to the weight A, and acting directly
upwards from H. To ascertain the relative effect of the
weights thus operating, let a line, HG, be drawn upon
the upright board to which the wheels are attached
from the point A upwards in the direction of the thread
AH. Also let lines be drawn upon the board under
the threads HE, and HF'; then on the line HG mark
the point a, and let Ha represent as many inches as the
number of ounces contained in the weight 4. From
the point a, on the line HG, draw the line ab parallel
to HF, and ac parallel to HE. Then if the sides Hb,
He, of the parallelogram thus formed be measured, it
will be found that Hb will consist of as many inches as
there are ounces in the weight B, and He, of as many
inches as there are ounces in the weight C. In this
illustration ounces and inckes have been used as the sub-
divisions of weight and length, but it is obvious that
the relative weights and lengths might consist of any
other denomination of weight and measure; but in
every case the same denomination of measure must be
applied to all the lines, and the same denomination of
weight to all the weights.

In the preceding diagram (fig. 2) the Parallelogram
of Forcesis represented by the lines ab, b H, He, and ca,
and the line Ha joining the opposite angles, which is
called the diagonal. The sides of the parallelogram, ab
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and ac, represent the quantity and direction of the two
forces acting together; and the diagonal Ha represents
the equivalent force, and the object of that illustration
was to shew the effect of opposing forces in producing
equilibrium; we shall now consider the operation of
forces applied in different directions, when their effect
produces motion instead of equilibrium. The annexed
figure is an illustration of motion Fig. 3.

produced by two forces in different
directions acting on a body. Let a
force be applied to the body A4, fig. 3,
sufficient to impel it as far as Bina
given time, and at the same instant
let another force be applied in the direction AC, suffi-
cient to carry the body to C in the same time; then
the body 4 will be under the influence ‘of a compound
instead of a single or simple force, and will neither
follow the direction of the one force nor the other: for
instead of moving towards B or C, it will move in the
direction of the diagonal line A.D, the length and situa-
tion of which may be determined by completing the
square ABDC, and drawing the diagonal 4D from the
angle A to the opposite one. In this case the ball 4
will pass along the diagonal in exactly the same space
of time that it would have required to traverse either of
the sides of the square, had but one force been applied ;
thus the ball 4 would reach D in the same time that
the force z would have sent it to C, or the force y to B.
It is evident that the force which acts in the direction
AC can neither accelerate nor retard the approach of the
body to the line BD, which is parallel to it; hence it
will arrive at D in the same time that it would have

[+
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done had no motion been communicated to it in the
direction AC. In like manner the motion in the di-
rection AB can neither make the body approach to nor
recede from CD: it therefore follows that in consequence
of the two motions, the body will be found both in CD
and DB; it will consequently be in D, the point of
intersection. A ship moving south by a direct wind,
may at the same time be carried east just as fast by a
tide or current moving east ; every instant, therefore, it
will go a little south and a little east, and really will
describe a middle line pointing south-east. 'When two
forces act upon a body like the wind and tide, the result
is the same, whether they act together or one after the
other ; for instance, if the wind drive a vessel one mile
south, as from A to C (fig. 3), and immediately after-
wards the tide -drive it one mile east, as from C to D,
the vessel will be in the same place at last, viz, at D, as
if she had been driven at once south-east in the line 4D
by the simultaneous action of the two. Therefore, by
drawing the lines AC and AB to represent the force
and " direction of the two causes of motion, and by then
adding one of them or an equivalent to the end of the
other, as CD to AC, or BD to AB, the square or pa-
rallelogram is sketched, of which the middle line, or
diagonal, as it is called, shews the resultant of the forces,
and the true course of the body obeying them.

The single force 4D, which is thus mechanically
equivalent to the two forces AC and AB, is called their
resultant ; and the two forces, AC and 4B, are called
its components. When the resultant is used for the
component, the process is called the “composition of



16 . COMPOSITION AND RESOLUTION OF FORCES.

force.” When we substitute for a single force two or
more forces of which it is the resultant, this process is
called the “resolution of force.”

. If instead of supposing the two forces equal, the
force which impels the body A towards B is twice or.
thrice as powerful as that which urges it towards C,
then the line A.B must be twice or Fig. 4 -
thrice as long as that from A4 to C, &

and therefore the diagonal will not
in this case be that of a square, but
of a parallelogram or oblong figure, as in the annexed
diagram, fig. 4, and so on for any other proportion of
force. :

The action of compound forces, Fig. 5.
and the motion produced by them, _
may be pleasingly illustrated by a j]
little machine, of which the adjoin- 7 L
ing cut, fig. 5, is a representation. -
It consists of two light frames of wood made to slide
one over the other; one frame contains a perpendicular
wire upon which a ball slides, and a string passes from
the ball to the other frame, so that when the frames
are moved the motion of the frame constitutes one force,
and the pulling of the string the other; and it will be
found that, while the ball passes from the bottom or
the top of the one frame, it will move over the diagonal
of the other.

As the diagonal of a parallelogrant can never in any
case be equal to two of its sides, and the length of the
diagonal must diminish as the angles of the sides in-
crease, it follows that resolution of forces must always




COMPOSITION AND RESOLUTION OF FORCES. 17

be attended with loss of power. The Fig. 6.
annexed diagram, fig. 6, will shew that B 4
the greater the angle is at which the | B

forces act, the greater will be the loss
by resolution. If BA, AC, be the
sides of a parallelogram, representing )
the' direction of two forces, and 4D ¢ D
the diagonal line of the body, it is clear that the line
AD will diminish as the angle BAC increases.

Let MA, MB, fig. 7, be the directions Fig. 7.
of two forces acting at the same time upon i
the ball M, let My represent the amount J
of force which MA exerts on the ball, and ¢
let the force which MB exercises be repre- B
sented by Mg; from g draw a line parallel to M f, and
from f draw a line parallel to Mg. A line drawn from
M to r will be the diagonal, or the direction of the re-
‘sultant.

The above illustration shews how two forces may
be compounded into one resultant. We will now con-
sider how a single force given as a resultant may be
resolved into two forces. Let ma, Fig. 8.
fig. 8, be the direction of the force
given applied to the ball m, and let
the magnitude of its force be repre- KN
sented by mf; let mec, md, be the
two directions in which it is required
to resolve it; from f draw the lines
/9, [k, parallel to these directions: ¢
mg, mk, represent the amount of the two forces re-
quired, mf being the resultant, or an equivalent to
them.

R d,

C
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In the annexed figure (9), AD is Fig. 9.
the diagonal of both the square ABDC
and the parallelogram AEDF; from r(
which it may be seen that a body may
be made to describe the same diagonal E
by any two forces represented by the °©
adjacent sides of either a square or a parallelogram.

Whatever be the number and di- Fig. 10
rection of the forces which act upon 2
a body at the same time, they may £
always be compounded into one re-
sultant: for example, if four forces, a
fig. 10, whose quantities and directions
are represented by the lines 4B, AC, 7
AD, AE, act at the same time upon *

a body at A, first draw Ba and aC respectively equal
and parallel to the lines AB and AC; we have thus
described the parallelogram 4 BaC': if a line be drawn.
from A to a, it will consequently be its diagonal, and
the direction in which the body would move if only
the two forces AB and AC acted upon it. Having
shewn that the body by only one force, represented by
the line Aa, moves in this direction by the action of
the two forces AB and AC, we will now consider them
as only one force, 4 a, which taken with the force 4D,
gives us the diagonal A f of the parallelogram 4 afD,
being the direction in which the body acted upon by
the three forces, AB, AC, and AD, will move, just
in the same manner as if only two forces, as Aa and
AD, had acted upon it. Three forces, therefore, -being
thus reduced to onme, represented by A f, we may com-
bine 4 f with A E, the fourth and remaining force, and

B
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8o obtain the diagonal Ag of the parallelogram A fg E,
the direction in which a body will move by the joint
action of four forces. In the same manner may be
found the resultait of any number of forces.

Fig. 11 Pig. 12.

A B A
X, =
c > E

“If a body be moving in the direction from 4 to B,
fig. 11, with a velocity which would carry it that
distance in a minute of time, if it is required to know
how much additional velocity it would receive by an-
other force in the direction. AC able to carry it from
A4 to0 0 in the same time, we have only to complete the
parallelogram and to draw the diagonal 4D; and the
additional velocity required will be as much as the
length of the diagonal AD exceeds the length of the
side AB. In like manner, if the force A E, fig. 12, be
_applied instead of AC, it is clear that this force has a
direction contrary to that of the force 4B, and there-
fore will diminish instead of increase its velocity ; we
must as before draw the diagonal AF, and as much
longer the side AB is than the diagonal, so much will
be the quantity of velocity lost by means of this new
force. .
On these principles is established the. following fun-
damental rule: “If a body be subjected :at the same
time to the action of two moving forces, each of which
would separately cause it to describe the side of a
square or parallelogram uniformly in a given time, the

c2
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body will describe the diagonal of the same square or
parallelogram uniformly in the same time.”

The forces which produce the motions along the
sides of the parallelogram are called the Simple Forces ;
and the force which would alone produce the motion
along the diagonal is called the Resulting Force, and
sometimes the Eguivalent Force,

On the other hand, the force which produces a
motion along any line may be conceived as resulting
from the combined action of two or more forces. This
is exemplified in a boat being drawn along a canal by
two horses, one on each side ; each pulls the boat direct-
ly towards himself in the direction of the rope; the
boat cannot go both ways, and its real motion results
from this combined action.

This is called the Composition of Forces. The two
forces having the directions and velocities represented
by the force of the horses are said to be compounded
into one force, which in this case is represented by the
onward motion of the boat.

Instances in nature of motion produced by several
powers acting at the same time are innumerable. A
ship impelled by the wind and tide is an example.
When a boat is rowed across a river in which there
is no current, it will proceed in a straight line per-
pendicular to the banks; if there be a current, it will
be carried down the river in a direction parallel to the
banks ; if both forces act upon the boat at the same
time, that is to say, if the oars tend to carry it across
the river in a direction perpendicular to the banks, and
the current tends to carry it down the river parallel to
the banks, it will obey neither of the forces, but will
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proceed exactly in that intermediate direction which
is determined by the composition of force. If it be
the object of the rower to gain a point on the other
side of the river immediately opposite to him, he will
take into consideration the velocity of the current, and
will not row in a direct line to the point, but in a
slanting direction.

Let TP be a ship, fig. 13, and Fig. 13.

AB the position of the sail, and sup- T

pose the wind to blow in the di-
rection CD : if the line CD be taken
to express the force of the wind, it
can be resolved into ED perpendi-
cular to the sail, and FD in the 4
direction of the plane of the canvass ;

it is evident that the latter force has no effect in pressing
on the sail, and that the former will move the vessel
in the direction DG. Let DG be resolved into DH
and DI, the former DH acting in the direction of
the keel, and the latter DI perpendicular to it, or in
the direction of the breadth; DH is the only pressure
that moves the vessel forward, the. other force DI
urges it sideways. It is evident from the form of the
vessel that the velocity in the direction DH of its keel
is much greater than the sideward direction DI. This
sideward direction is called lee-way. .

It is clear from this explanation that a wind which
is nearly opposed to the course of a vessel may, never-
theless, be made to impel it by the effect of sails,

Let AB, fig. 14, represent a boat moving in the
direction of the arrow T'S, and let &, F be two per-
sons sitting opposite each other in the boat: if E
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tosses a ball to F, it will appear Fig. 14

to move in the line EF, whether _

the boat is at rest or going down s
the river ; if however the boat re- 5

mains at rest, the ball will really $o—wT

move in that direction, but when it goes along there is
another motion (the onward motion of the boat) which
acts at the same time upon the ball in the direction
Ea. The ball is therefore, on the principle of com-
pound motion, carried in the line E'd, although it
appears to the person throwing the ball to pass in the
direction EF, because the force which draws the boat
carries also himself and the ball with it.

Let a uniform rigid bar Fig. 15.
AB balance upon a pivot ° 4 = &
C 8o as to move freely _/_
about it, at the extremity ¥
4 let a force represented in magnitude and direction
by AF be applied; then, we may resolve 4AF into
two forces acting parallel and perpendicular to 4B,
these will be represented in magnitude and direction
by AD, and AE. Now AD has clearly no effect upon
the bar 4B since it acts along 4B, and 4B cannot
move off the pivot C, therefore the effect of AF is just
equal to the effect of AE, and as the line AF is longer
than AE, its force will therefore be greater : it is proved
from this that a force applied at right angles will have
an effect equal to that of a greater force applied oh-
liquely. In like manner we may calculate the amount
of force which is lost by an oblique application; for
suppose in the same figure, the force AF is applied, it
is obvious that a greater force is employed than is

B
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actually necessary, as if it had been applied at right
angles, the effect would have been greater: if we would
know the exact amount of force employed unnecessarily,
we have only to resolve this force into two, viz. 4E
and EF, and the amount of force that is useless by the
oblique application of it will be to the whole as EF
is to AF.

Great bells, which are too heavy for one man to
ring, are rung by the joint efforts of several men. To
the main rope of the bell several other ropes are at-
tached, each being pulled by a man ; these various forces
may, by the composition and resolution of forces, be
compounded into one acting on the main rope.

A paper kite acted upon by the wind and string is
another example; so are the motions of fishes, the act
of swimming, the flight of birds, &c.

The ease with which equestrian feats are performed,
may be accounted for on the principle of compounded
motion. 'When the horseman leaps perpendicularly up-
wards while the horse is at full speed, on leaving the
saddle his body has the same velocity as the horse;
he has therefore no occasion to project his body for-
ward, as this is already done for him by the motion
he has in common with the horse, which, compounded
with the upward motion of the rider, accomplishes the
leap: his body therefore, describes the diagonal of a
parallelogram, one side of which is in the direction of
the horse’s motion, and the other perpendicularly up-
ward.

It is important that the student in mechanics should
make himself fully acquainted with the principle of the
composition and resolution of forces, as it is necessary
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in the solution of nearly every problem which relates
to the motion of bodies acted upon by outward forces,
however they may be applied. The doctrine of projec~
tiles, which comprehends the art of gunnery, is founded
upon this principle ; as it may be demonstrated that all
bodies projected by any force in a rectilinear direction
near the surface of the earth, will by the force of gravity
continually acting upon them, be altered from that di-
rection, and move in a curve towards the earth. By
the aid of this principle Sir Isaac Newton has demon-
strated in his Principia the true system of the universe,
and discovered the laws by which the heavenly bodies
are directed and regulated, and the effects and influence
they have upon each other. It is also of great service
in demonstrating the nature and properties of the me-
chanical powers, of which we shall treat in another part
of this volume.

In the preceding remarks on the composition and
resolution of forces, we have considered the different
forces to act upon the same body so as to move it
uniformly, and in all such cases it was shewn that the
diagonal described would be a straight line; we shall
presently consider one of the forces to act in such a
manner as to cause the body to move faster and faster,
and in this case the line described will be a curve, All
bodies which are projected obliquely in a rectilinear
direction, and at the same time acted upon by the force
of gravity (which has a constant tendency to accelerate
their motion), will move in a curvilinear direction.
‘When therefore we see a body move in a curve of any
kind whatever, we conclude it must be acted upon by
two powers at least, one. putting it in motion, and
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another drawing it away from the rectilinear course in
which it would otherwise have continued to move; and
whenever that power which bent the motion of the
body from a straight line into a curve ceases to act,
the body will again move on in a straight line. A ball
on being shot from a cannon would, according to the
first law of motion, proceed onwards in a straight line,
but owing to the force of gravity, it will move in a
curvilinear direction, and “the change is proportional
to the impressed' force.” The laws of projectiles cannot
be fully understood until the student has made himself
acquainted with the “laws of gravitation,” which will
be treated of in another chapter.

THIRD LAW OF MOTION.

- Action must always be equal and contrary to reaction,
or the actions of two bodies upon each other must be equal
and their directions must be opposite.

‘When one body strikes against another, the shock is
the same, whether the motion be shared between them,
or only one of the bodies be in motion: thus, if one
man runs against another man who is standing still,
each will receive a shock ; but if both men be running
at the same rate, and in opposite directions, the shock
will be doubled. If the weight of one man be much
less than that of the other, he will not on that account
suffer a greater shock than the heavier man, for the
shock which they sustain will be the same, although
the former be knocked down and the latter be only
made to stagger. When two vessels of 800 tons’ burden
run foul of each other at sea, their velocities or rates of
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sailing being equal, each would sustain a shock equal
to that which one of them would receive if at rest, and
struck by a vessel of 1600 tons’ burden moving at the
same rate; or if one of the vessels had only 300 tons’
burden and the other 800 tons’, the shock would still
be the same, although the smaller vessel would be much
less able to bear it.

If two boats of equal size and weight be floating on
the water and at rest, at a distance of four feet from
each other, and a man in one boat draw the other to-
wards him by means of a rope, when the boats touch
each other each will have been drawn through the space
of two feet; or when both boats are together, and the
man pushes one boat from him, that and his own boat
will recede from each other to equal distances: again,
if one boat were twice as large as the other, it would
be pulled only half the distance of the small one, thus
shewing that action and reaction in all cases where
bodies act upon one another are “equal and contrary.”

Action and reaction are very Fig. 16.
plainly seen in rowing, swimming,
and flying; as for example, when
a man R, in the boat B, fig. 16,
pulls his oar, he drives the water towards H, and the
water drives the boat as much towards D. In swim-
ming, which may be considered rowing with the hands
and feet, we are as much pushed forward by the water
a8 we push the water back. Birds in flying are pushed
forward by the reaction of the air against their expanded
wings when they strike the air with them: for instance,
if a bird strikes the air downwards with his wings with
a force equal to what would raise a weight of ten
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pounds, the reaction of the air will push the bird up-~
wards with the same force; but if the bird weighs one
pound, the effect of the reaction of the air will cause
the bird to rise with the force of only nine pounds,—
that is, the bird will rise just as one pound would do
fixed to a string passing over a pulley by the force of
the descent of ten pounds at the other end of the string.
If the bird should strike the air only with a force equal
to its own weight, it would then be suspended in the
air for some time without motion, which is often ob-
served in kites, hawks, and other birds of prey.

If a piece of wood be pressed by the finger, the finger
is equally pressed by the wood. If a ball 4 in motion
strike another ball B at rest, the motion communicated
to the latter will be taken from the former, and the
velocity of the former will be proportionally diminished.
‘When this takes place, we say the body 4 has imparted
motion to the body B, and therefore a part of its own
force or motion is destroyed ; this is called the reaction
of the body B upon 4. Now, as the force of the body
A can be diminished only as far as it finds resistance in
B, it follows that action and reaction are equal to each
other,~—that is, 4 loses as much of its own force as it
imparts to B. The imparting of motion requires time;
this may be shewn by a variety .of experiments. One
of the simplest is to place a heavy substance, say a
piece of copper, on a smooth horizontal surface which
covers a vessel of sufficient diameter; when the cover
is suddenly removed, without changing its horizontal
direction, the copper will fall into the vessel, which
would not take place if the motion communicated to
the cover were at the same time given to the copper.
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If a horse draws a heavy load, the load draws
the horse equally backwards, for the rope is equally
‘stretched towards both.

In pressing down the empty scale of a balance, while
the other scale holds a weight of four pounds, it is ob-
vious that the force exerted must be equal to four
pounds ; but if one scale be loaded with twenty, and
the other with fifteen pounds, the equilibrium may still
be preserved by pressing on the latter with a force
equal to five pounds only.

Porcussion of inelastic bodies.—When two inelastic
bodies of equal moments moving in opposite directions
strike against each other, each will destroy the onward
motion of the other, and consequently both will be re-
duced to a state of rest. If they have unaqual moments
when they come in collision with each other, the motion
of the body whose moment was less before the stroke
will not only be destroyed, but it will be compelled to
move in the opposite direction, as it will follow the
impulse of the greater moment ; both bodies may then
be considered as one mass, moving with a velocity cot-
responding to the difference between the original move-
ments. Let us suppose the two equal bodies 4 and B,
fig. 17, are moving against each other, 4 with the
velocity 6, and B with the velocity 4 ; then B will lose
its whole velocity by the stroke, 4 only 4, and the
remainder 2 will be divided between 4 and B: both
‘bodies will now move with the velocity 1 in the di-
rection from B to m.

Fig. 17.

N

A0 o ™
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If two bodies, 4 and B, fig. 18, be moving in the
same direction, 4 with the velocity 6, and B with the
velocity 4, (the masses being equal,) 4 will overtake
B, and during the stroke communicate to it as much
motion as will equalize their velocities; both bodies
will continue to move in the same direction with the
velocity 5; A will have lost 1, and B received an
addition of 1 to its velocity.

Fig. 18.

B
40 ©- - -

“The velocities with which unequal bodies move
after being impelled by equal forces are reciprocally as
the quantities of matter in each body ;” the meaning of
which is, the greater the quantity of matter the less
will be the velocity in each. Although the velocities
with which unequal bodies impelled by equal forces
are unequal, their moments are however the same: the
moment of any body, as before observed, is composed
of the velocity with which it moves and its weight
multiplied together; therefore, unequal bodies impelled
by equal forces, although they will not move with
equal velocities, will yet communicate the same force
to any body that either of them may happen to strike.

Thus, suppose the body A4, fig. 19, to weigh one
ounce, and let it be impelled along the line 4B, and
suppose another body C, weighing four ounces, to be
impelled with an egual force along the line CD, it is
evident that their velocities will be unequal,—that is,
the velocity of C will be so much less than that of 4
as its weight is greater than that of 4 ; therefore, the
weight of C being four times greater than that of 4,
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its velocity will be four times less. From these remarks
it will easily be understood that if the body 4 impinge
upon another body E, it would impress the same
amount of force upon K as C would if it impinged
upon a body F also at rest; the reason is, that the
want of velocity in C is compensated by its weight
being greater than that of 4, and the want of weight
in 4 is compensated by its velocity being gredter than
that of C.

Fig. 19,
c g D

. An experimental illustration of the equality of action
and reaction in the collision of bodies may be shewn
as follows:

Let two equal balls, a and 5, Fig, 9.
fig. 20, formed of clay or any other
inelastic substance, be suspended by [-

threads of the same length so as to
hang in contact at the middle of
the graduated arch zy. If they be IS\
separated, and the ball @ be moved MRS

to the figure 4 on one side, and the ball 4 to the
corresponding figure 4 on the other side, and let fall
at the same moment of time, they will impinge upon
each other with equal velocities, and they will be found
after impact to remain at rest, each baving destroyed
the force of the other. This proves that when equal
masses have equal velocities they have equal forces,
for if otherwise, the united masses would after impact
move in the direction of that which had the greater
force; this may be proved in the following manner.
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Let the weight of the ball a be double that of 3, let
a be moved to the figure 3, and & to the figure 6 on
the opposite side; when allowed to descend, their
velocities will be as 3 to 6, and their masses as 2
to 1, and therefore their forces will be equal; be-
cause the mass of a being 2, when multiplied by
its velocity which is 3, the product is 6, and the
mass ‘of 4 being 1, and its velocity 6, the product is
also 6. .

It will be obvious from the preceding examples, that
as the moment of a body is to be estimated by the
velocity of its motion and its weight taken together,
a small body may produce an extraordinary effect: when
moving with great velocity, as well as a very heavy
body moving at a slow rate. A tallow candle fired
from a gun will pierce a deal board; and a heavily-
Iaden ship with a velocity scarcely perceptible may
approach a small boat chained to a pier-wall with suf-
ficient force to crush it. A ball weighing half an ounce
shot from a cannon might produce as great an effect
as another ball weighing thirty-six pounds, provided the
smaller ball had 1152 times the velocity of the larger
ball; for 1152 half-ounces being equal to 36 pounds,
it is evident that the velocity of the smaller ball would
be just so many times greater than the velocity of the
larger ball, as the mass of the latter would be greater
than tbat of the former.

Percussion of elastic bodies.—When two bodies, both
of them being perfectly elastic, come in collision with
each other, the reaction of each of them upon the other
must be equal to the loes or gain which it receives from
‘the other: thus, if the one gives the other the impulse
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5, it receives by the elasticity of the other the same
impulse 5 back again in the opposite direction. If the
two equal bodies, 4 and B, fig. 21, move against each
other, 4 with the velocity 5, and B with the velocity
3, then, after impact, 4 will return with the velocity
3, and B with the velocity 5. During the stroke 4
lost 8 of its velocity in the direction from 4 to B
(because 3 is the velocity of B), but by the reaction
of the elastic body B, it receives the whole impulse

Fig. 21,
4 22 .
b 25

5 back again in the direction from D to 4, which not
only cancels the velocity 2 remaining after the stroke,
but impels it backwards with the velocity 3. In the
same manner it may be shewn that B must return from
4 to B with the velocity 5: if B stand still, and 4
strike upon it with the velocity 4, then the body B
will be impelled from B to m with the velocity 4,
which 4 had before the stroke; and as B had no ve
locity, there will consequently be none imparted to 4,
and it will therefore remain stationary at D.

Let two ivory balls of equal weight, Fig. 22.
a, b, be suspended by threads as in the
annexed figure (22), then if the ball & / \
be drawn aside to ¢, and suffered to fall c/ d,
against the ball 3, it will drive it to d, “
or a distance equal to that through which the first ball
fell ; but it will itself rest at a, having imparted its
own moving power to the second ball.

If four ivory balls, fig. 23, of equal weight are sus-
pended by threads of the same length, and the first ball
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be drawn aside and allowed to fall Fig. 5.
again so as to strike upon the second Y;
ball, it will be seen that the second /

and third balls will remain at rest, ({
while the fourth will bound off with ¢

a velocity equal to that with which

the first ball struck against the second. In this case
the motion, or rather the moving force of the first ball,
is transmitted through the two intermediate balls to
the fourth, which, finding no resistance, is acted on by
the whole force: the same effect would be produced
by any number of balls.
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CHAPTER 1IV.
ON GRAVITY.,

AL bodies when left to themselves fall until they
touch the earth, or some other body which can sustain
them. This phenomenon takes place at the surface of
the earth, at all known heights above, and depths below
the surface; as may be seen by hail and rain falling
from the clouds, and. by a stone suffered to fall into a
deep pit. Matter being naturally inert cannot move
of itself, and consequently has no power of itself to
descend to the earth; it is therefore necessary that some
force should cause it to fall, and this force is termed
gravity. Thus gravity is the force which causes bodies
to fall to the earth; but this definition of gravity will
convey to us an incomplete idea of its power if we sup-
pose it produces no other effects, for by it are produced
many other phenomena and many other motions. As
for instance, the flowing of rivers, and the ascent of
light bodies in fluids, are but the effects of the same
force which we call gravity. Smoke will be seen some-
times to rise to a considerable height in the atmosphere,
being driven upwards solely by the force of the medium
through which it passes; for the particles of smoke
cannot rise in the least degree without displacing or
forcing downwards portions of atmosphere equal to their
own bulk. :

All substances, then, gravitate towards the earth ;
and this is the cause of what is termed weight, being
the pressure directed towards the earth which every
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body exerts upon those which are placed beneath it:
if the hand supports a stone, the pressure which the
stone exerts upon the hand is called the weight of the
stone; hence all bodies are heavy, since all fall to the
earth when left to themselves.

As the attraction of gravity draws bodies towards
the centre of the earth, it necessarily follows that two
falling bodies will not fall in directions parallel to each
other, as two lines cannot be parallel to each other
which meet in a point; all bodies therefore, under the
influence of gravitation will diverge somewhat from a
line perpendicular to an horizontal plane beneath them.
If we imagine a pair of scales, as in fig. 24, Fig.ss .
to be constructed in such a manner as to
bear a certain proportion to a sphere towards @ ' g, _
the centre of which each scale is attracted, \
and if two lines be drawn from each point l
at which the scales are suspended to the
centre of the sphere, it will be obvious that
the scales will diverge a little from the perpendicular.
But the magnitudes of any bodies which we can make
the subjects of experiment are so extremely inconsider-
able when compared with that of the earth as to render
their inclination imperceptible to our senses.

Falling bodies—In observing the fall of heavy and
light bodies from the same height we are at once struck
with the different rates of their descent: lead falls very
rapidly, and paper very slowly ; this cannot arise from
the difference of the weight of the two substances, as
bodies have no natural tendency to fall any more than
to rise, and will not fall unless impelled by some force,
which force must be proportioned to the quantity of

D2
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matter it has to move, and as gravity acts equally on
all the particles of the bodies, there would be no differ-
ence in the time they would reach the earth were it not
for some retarding cause. The cause of this difference
is the resistance of the air, the effect of which is greater
upon the paper than the lead ; if however, the paper be
rolled up into a ball, it will necessarily offer a much
smaller surface to the air, and will meet with much less
resistance, consequently it will fall more rapidly.

If therefore, we would ascertain the true motion of
falling bodies, it is necessary that they should fall in
vacuum, that is, in a space void of air, water, or any
other matter capable of offering resistance and hindering
the action of gravity. The descent of bodies to the
earth when free from the resistance of the air may be
pleasingly exemplified in the well-known experiment
of the coin and feather. Let 4, fig. 25, -

. . g. 95.
represent a glass receiver having on the
top a brass cap or cover fitting it air-tight;
through this cover let the wire C pass, fit-
ting air-tight also, and supporting a small
stage so contrived as to fall when the wire
is turned; on this stage place a coin
and a feather, £, F'; then exhaust the re-
ceiver by means of the air-pump, and turn the wire so
as to let the stage drop, and it will be found that they
will both fall to the bottom of the receiver at the same
instant. This experiment may be modified by allowing
a small portion of air to enter the receiver; a slight
difference will then be observed in the fall of the two
bodies, the feather falling slower than the coin: if
more air be introduced, its fall will be still slower, and
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so on; and if the air be allowed to fill the receiver, the
fall will be the same as in free air.

We see, therefore, that gravity when acting freely,
that is, free from any impediment to its effects, acts
upon all bodies with the same energy, whatever be
their weight and whatever the substance of which they
are composed. In vacuum a mass of gold of one hun-
dred pounds will not fall any quicker than leaf gold or
a piece of paper. .

After having shewn that in reality all bodies fall with
the same volocity, it is necessary to investigate the na-
ture of this common velocity which rules the fall of all
kinds of matter. It is evident that if a bullet be drop-
ped from a high tower, having by the force of gravity
once acquired a certain degree of motion, it would con-
tinue to fall, by the motion it had received by the first
impulse, even if the cause were to cease. For instance,
if when it had fallen half-way it were possible to de-
prive it of gravity, it would, according to the first law
of motion, continue its motion, and in the direction in
which it was first impelled, as a stone continues to pro-
ceed when thrown by the hand without any new im-
pulse. The power of gravity, however, does not cease,
and therefore every inch the bullet falls it receives an
increase of motion. Thus, if in the space of one second
it falls through sixteen feet and one inch, it will then
have acquired as much swiftness or velocity as will
carry it through three times that distance in the next
second, five times in the third, seven in the fourth, nine
in the fifth. This will account for its accelerated motion,
and for the increased momentum with which it falls
near the bottom. Thus, the time which a body takes
in falling is easily calculated ; for if it descends through
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a certain space* in the first second of its fall, it will
descend through four times that space in the first two
seconds, nine times that space in the first three seconds,
sixteen times that space in the first four seconds, and so
on in the same proportion. Thus, to find the space
through which a body falls in any given number of
seconds, we must multiply the space through which it
falls in one second by the squaret of the number of
seconds in the time of the fall,

Uniformly accelerated motion.—W e have shewn above
that when a body falls from rest by the action of gravity
its velocity goes on continually increasing so long as it
falls freely. The motion of bodies which fall freely is
so rapid that it cannot be observed with sufficient ac-
curacy, and hence some contrivance is necessary which
may diminish the velocity while it preserves the law of
the acceleration. This effect may be obtained in differ-
ent ways, either by making the body descend down a
very smooth inclined plane, with an inclination suffi-
cient only to allow its velocity to be observed i, or by
the machine invented by Mr. Attwood. Fig. 8.
This machine consists of an upright pil- c
lar, as represented in the adjoining cut,
fig. 26 ; the weights 4 and B are of the
same size, and made to balance each other
very exactly, and are connected by a silk
line that passes over a wheel or pulley C. A
The axis of the pulley is. placed upon
friction wheels, so that the effect of fric-

* It is found by experiment that a body falls very nearly sixteen
feet and one-twelfth in the first second by the force of gravity.

+ The square of any number is that number multiplied by itself :
thus, the square of 2 is 4, the square of 3 is 9, and so on.
" # This method was invented by Galileo,

r
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tion is scarcely sensible.  is a ring through which the
weight B passes, and s is a stage on which the weight
rests in its descent. The ring and stage both slide up
and down, and may be fixed at pleasure by thumb-
screws. The pillar is a graduated scale, and D is a
small bent bar of metal, and longer than the diameter
of the ring ». When the machine is to be used, the
weight B is drawn up to the top of the graduated pil-
lar, and the ring and stage are placed a certain number
of inches from each other; the small bar D is then
placed across the weight B, by means of which it is
made slowly to descend: when it has descended to the
ring, the small weight D is taken off by the ring, and
thus the weights 4 and B are left equal to each other.
Now, it must be observed, that the motion and descent
of the weight B is entirely owing to the gravitating
force of the weight D, until it arrives at the ring », when
the action of gravity is suspended, and the weight B
continues to move downwards to the stage in conse-
quence of the velocity it had acquired previously to that
time. To comprehend the accuracy of this machine, it
must be understood that the velocities of gravitating
bodies are supposed to be equal, whether they are large
or small, this being the case when no calculation is
made for the resistance of the air. Consequently the
weight D placed on the large weight B is a repre-
sentative of all other solid descending bodies. The
- slowness of its descent, when compared with freely gra-
vitating bodies, is only a convenience by which its
motion can be accurately measured, for it is the rate
of increase of velocity which the machine is designed
to ascertain, and not the actual velocity of falling bodies.
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Now, it will be readily comprehended that in this re-
spect it makes no difference how slowly a body falls,
provided it follows the same laws as other descending
bodies; and it has already been stated that all estimates
on this subject are made from the known distance a
body descends during the first second of time. It fol-
lows, therefore, that if it can be ascertained exactly how
much faster a body falls during the third, fourth, or
fifth second, than it did during the first second, by
knowing how far it fell during the first second we should
be able to estimate the distance it would fall during all
succeeding seconds. If then, by means of a pendulum
beating seconds, the weight B should be found to descend
a certain number of inches during the first second, and
another certain number during the next second, and so
on, the ratio of increased descent would be precisely
ascertained, and could be easily applied to the falling
of other bodies; and this is the use to which this in-
strument is applied. By this machine it can also be
ascertained how much the actual velocity of a falling
body depends on the force of gravity, and how much
on acquired velocity; for the force of gravity gives
motion to the descending weight only until it arrives
at the ring, after which the motion is continued by the
velocity it had before acquired.

From experiments accurately made with this machine,
it has been fully established, that if the time of a falling
body be divided into equal parts, say into seconds, the
spaces through which it falls in each second, taken
separately, will be as the odd numbers 1, 3, 5, 7, 9,
and so on, To make this clear, suppose the times oc-
cupied by the falling body to be 1, 2, 3, and 4 seconds ;

|
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then the spaces fallen through will be as the squares of
these seconds or times, viz. 1, 4, 9, and 16, the square
of 1 being 1, the square of 2 being 4, the square of 3,
9, and so on. The distance fallen through, therefore,
during the second second, may be found by taking 1,
the distance corresponding to one second from 4, the
~ distance corresponding to two seconds, and is therefore
3 ; for the third second take 4 from 9, and therefore the
distance will be 5; for the fourth second take 9 from
16, and the distance will be 7; and so on. During
the first second then, the body falls a certain distance;
during the next second it falls three times that distance;
during the third, five times that distance; during the
fourth, seven times that distance; and so continually
in that proportion™*.

" Gravitation acts upon all bodies at all times, and
that equally whether in motion or at rest ; as is evident
from the velocities of falling bodies, which are uniformly
accelerated during the whole of their course. That a
force constantly and equally acting, will produce an
uniform acceleration of velocity, is clear from the fol-
lowing considerations.

Suppose a body 4 begins to move by the impulse of
gravity impressed at that instant with a velocity 1, the
next instant another impulse will create a velocity equal
to the former. It will therefore move with the velocity
2, and at the third instant with the velocity 3, &c. for
the preceding velocities are not lessened by the suc-
ceeding impulses: it therefore follows that if the im-
pulses are equal, and equidistant in time, the motion
will be uniformly accelerated, and the velocity will be

* Comstock’s Natural Philosophy.
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in proportion to the time; so that if a body moves
with an uniform velocity for a given time, the space
described will be in proportion to that time and velo-
city taken together. ILet one side of Fig. 27.

the annexed parallelogram, fig. 27, 4 —— 7
represent the time of the motion of L
a body, and the other the uniform 7
velocity with which it moves; the ¢ "
parallelogram itself will represent
the space described in that time.
Thus, let the line AE be divided E L
into any number of equal parts, in B, C, D, &c. and
from these points draw the equal straight lines, AF,
BG, CH, &c.; then if AB, BC, CD, &c. represent
equal successive portions of time, and AF, BG, CH, &c.
represent the uniform velocity with which a body moves,
then will the parallelograms AG, BH, CK, &c. repre-
sent the spaces described in those equal portions of time,
and the parallelogram AFLE the wkhole space described
in the time represented by AE. Next suppose that a
body moves uniformly as before, during the equal suc-
cessive portions of time repre- Fig. 8.

sented by AB, BC, CD, &c.
fig. 28, but at the end of each B|——(3—w
portion of time receives an in-
erease of velocity ; as, for in-
stance, during the time it moves
from A to B let it move with a £
velocity represented by AF'; during the time it moves
from B to C let its velocity be represented by BH, &c.
If the various parallelograms be completed, then the
space described in the time AB will be represented by

K
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the parallelogram AG, in the time BC by the paral-
lelogram BK, &c.
- The laws of falling bodies may be rendered interesting
by the practical application of them to ascertain the
depth of a well: if a stone be dropped into a well, and
notice be taken of the time it takes in reaching the
bottom, its depth may be calculated on the principles
already explained. Suppose the stone is exactly four
seconds in reaching the bottom,
then in the first second it will have fallen 16 feet,
in the next second 3 times 16 feet, or 48 ,,
in the third second 5 times 16 feet, or 80 ,,
and, in the fourth second, 7 times 16 feet, or 112 ,,

depth of the well, 256

The same result will be produced by the following
rule, which is more easily remembered, * The spaces
described by a falling body increase as the squares of the
times increase.” Therefore, as the stone takes four
seconds to reach the bottom of the well, the square
of this is 16; and if this product be multiplied by
16, being the space described by the stone in the
first second, we shall have the same result as before,
16 x 16 =256+,

A fragment of rock detached from the summit of a
steep mountain begins its motion slowly ; but as it pro-
ceeds downwards it moves with perpetually increased
velocity, gathering fresh speed and momentum with

® Although a body falls nearly sixteen feet and one-twelfth in
the first second, we have left out the fraction in the above example
to facilitate the calculation.
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every instant, until its force is such that it sweeps
every obstacle before it.

The same principle of accelerated velocity in bodies
falling from a height may be illustrated by pouring
out molasses or thick syrup: if the height of the fall
be considerable, the bulky stream, which on leaving
the vessel is perhaps two inches in diameter, is re-
duced before it reaches the bottom to a small thread ;
but what it loses in thickness it gains in velocity,
as it will fill the receiving vessel with surprising
rapidity. A person may leap from a chair without
danger; if he leap from a high window, he will
probably fracture a bone; but if he jump from the
house-top, his velocity becomes so much increased
before he reaches the ground as to shatter him to pieces
by the fall.

The battering-ram used by the ancients is an example
of the accumulation of force, which consisted of a very
large piece of timber loaded at one end with brass or
iron, and was suspended by ropes or chains from a dis-
tance above it, to allow it to swing freely; it was moved
by the joint efforts of many men, and when it had ac-
quired by little and little a certain degree of velocity, it
was made to strike walls or fortifications of cities, and
thus beat them down. This machine was by the men
accelerated in an horizontal direction, in the manner
that falling bodies are accelerated by gravity in a ver-
tical ome.

An engine for driving piles into the earth is an illus-
tration of the accumulation of force downwards, or in a
vertical direction.
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It consists of a very heavy piece of hard
wood, represented by @ in fig. 29, usually
called the rammer, which is made to slide
up and down the upright shafts BC.
When a pile is required to be driven, the
rammer is drawn up to the top of the
shafts by means of a rope attached to the
windlass w, and by an easy contrivance the
rammer is loosened from the hook K and
falls upon the pile P. Suppose the ram-
mer weighs 500 pounds, and falls at the
rate of 8 feet in a second ; therefore, multiplying the
mass by the velocity, viz. 500 x 8 we shall have 4000
for the momentum of the rammer with such a fall ; and
the greater the height from which it falls, the greater
of course will be its momentum, or force with which it
will strike the pile.

As heavy bodies are uniformly accelerated in their
descent, they are as uniformly retarded by the force of
gravity in their ascent. Thus, if a stone be thrown
upwards to the top of a high tower, just as much force
must be given it as it would acquire in its descent.
The body D, fig. 30, in rolling down Fig. 0.
the inclined plane A, will acquire ¢
sufficient velocity by the time it A&A
arrives at B to carry it up nearly to
C, which is a plane of the same height; and if the
plane were perfectly smooth and the air offered no re-
sistance, it would carry it up quite to that point: it is
upon this principle the pendulum is constructed.

A pendulum consists of a bob or ball fixed to a small
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string or wire; if the bob is suffered Fig. 31.
to fall at 4, fig. 31, it will fall to D, B
and by the velocity it acquires in

the fall will rise to C, that is, to the

same height it fell from 4 to D.

This is called an oscillation ; and if © —
a pendulum were put in motion in £*¥* D

a space quite void of air, and free from all resistance
from friction on the point of suspension, it would move
for ever. The vibrations of the pendulum are produced
by its effort to fall; thus, if in the same figure the line
BD is perpendicular to the horizon, and EF parallel to
it, then in raising the bob from D to A it will in reality
be raised the perpendicular height AF, and it will
descend from A to D, performing the curved diagonal
AmD with the same velocity as if it had fallen imme-
diately from A to . The vibrations of any one pen-
dulum will be described in equal times, whatever be the
extent of the arc through which it moves, -provided
that arc do not exceed a certain limit, It is this re-
markable property of the pendulum that makes it so
useful as a measure of time. Owing to the resistance
of the air the vibration of a pendulum is gradually
weakened, and every succeeding arc passed through will
be less than the foregoing; and yet it will be found
that, although the vibrations of a pendulum become
continually slower, there will be but little difference in
the time taken up by the bob in moving from 4 to 4,
3 to 3, &c. until its vibration altogether ceases. This
equality of vibration of bodies in certain curves was
discovered by Galileo, whose attention is said to have
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been excited by remarking the motion of a chandelier
hanging from the ceiling of a church at Pisa; for, ob-
serving that it moved uniformly as to time, independent
of the space passed through, he was induced to make
experiments, which established what has been termed
the law of Jeockronism, or equality of time.
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CHAPTER V,
CURVILINEAR MOTION.

Having considered in previous chapters the motion
of a body when impelled by a single force—when under
the influence of compound forces—and when acted upon
only by the force of gravity, the student will now be
prepared to comprehend the nature of what is called
curvilinear motion. This kind of motion, as its name
implies, is neither straight forward nor diagonal, but
through a line which is curved, and it is caused by the
attraction of gravity acting across any body in motion :
a stream of water, for instance, issuing from a hole in a
cask, as it falls towards the ground is an example of a
curved line; and the shape of the curve will depend on
the velocity with which the water issues from the cask.

The flying cannon-ball or stone drawn down by the
force of gravity is an example, for the projectile force
ceases with the first impulse; but the bending force is
acting every instant, and by every instant producing a
new effect, causes a curvilinear path : thus, in throwing
a stone or shooting a ball from a gun, the power of the
arm or of the gunpowder will be continually diminishing
from the resistance of the air, while the power of gravi-
tation would remain equal were not its effects increased
by the accelerated descent of the body in the manner
which has been already described in the chapter on
gravity ; and the consequence is, that these two powers
will in all cases so combine into one as to cause
the projected body to describe a curvilinear path.
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In the annexed figure, let
A4 represent a ball just dis-
charged from a gun, then 4B
will represent the direction in
which the force of gravitation
will draw it downwards, and
AC the direction in which
the gunpowder impels it forwards, constituting two
forces acting in opposition to each other; but from 4 to
C it may be presumed that the force of the gunpowder
is so much greater than that of gravitation that the
latter will not be felt, consequently the ball will proceed
in a straight direction for a considerable distance. But
the force of gravitation being constant, it may be
presumed that at C the force of the gunpowder is so far
spent as to permit it to begin its descent, and in doing
this, if it falls through any given space C'd, in passing on
from C to e, it will perform the diagonal Cf, and in the
next equal space of time will descend through three
times the distance Cd, or from f to g, while the force of
the powder will be so much more diminished as only to
carry it as far as A, consequently it will be found at i;
while in the next equal period it will descend through
five equal spaces, as at %, while it will only be pro-
jected forward to /; and in the next period, as it must
descend through seven such spaces, it will touch the
ground at m, and stop, having described a portion of a
curve from the point C to m, or during all the time that
the two forces were permitted to act upon it at once.

‘We have before observed, that the force of gravity
being always the same, the shape of the curve described
must depend on the force with which the body is pro-

E
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jected; but, however great this force may be, the
moving body,—a cannon-ball for instance,—if projected
horizontally, will reach the ground in the same time as
it would if merely allowed to fall by the force of gra-
vity only from the same height: although this fact
without consideration appears improbable, it will be
easily comprehended, if we bear in mind that the pro-
jectile force does not in the least interfere with the force
of gravity. If a ball be shot from a cannon with a
force sufficient to impel it horizontally with a velocity
of 1000 feet in a second, it is nevertheless attracted
downwards by the force of gravity with the same
amount of force as one with a velocity of only 100 feet
in a second ; it must therefore descend the same distance
in the same time. The distance to which two balls will
reach depends on the projectile force given to each: if
one has more force given to it than the other, it will
move through a greater space than the one impelled by
the lesser force ; but they will both reach the ground at
the same time, ome moving slowly through a short
space, and the other moving rapidly through a greater
space.

The curve which a projectile describes is termed a
parabola, although the resistance of the air, which is not
recognised in the theory, produces a considerable influ-
ence on the practical result.
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CHAPTER VI.
CENTRE OF GRAVITY.

TrE Centre of Gravity is that point of a body in
which the whole force of its gravity or weight is united.
‘Whatever therefore supports that point, bears the
weight of the whole body; and while it is supported
the body cannot fall, because the weights of all its parts
are in perfect equilibrium about that point. Thus, if I
endeavour to balance a stick by laying it across my
finger, after a few trials I find a place where neither end
will preponderate ; the part, then, which rests upon my
finger is immediately under the centre of gravity.

Whenever bodies fall by the force of gravity alone,
they fallin the direction of a right line, which may be
imagined to be drawn from the centre of gravity of any
body towards the centre of the earth, and on this account
is called the line of direction.

If a straight rod of wood Fig. 33,
or metal, 4B, fig. 33, of the 4 c __B
same thickness and density b

from one end to the other, be supported by its middle,
like a weighing beam, upon the top of the pin or point
D immediately under its centre C, the two ends will just
balance each other, and the beam will be supported
without any other assistance ; this is in accordance with
the law of gravity already explained, for as there is an
equal quantity of matter in each end, or between 4 and
Cand B and C, there will also be just as much attraction,
and therefore a balance must ensue. To render this
more intelligible, let us suppose 4 and B, fig. 34, to be
E2
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two equal particles of matter connected by the straight
bar 4B, a point midway between 4 and B will be the
centre of gravity of the two bodies; for it is clear that,
if G be supported, the two bodies will balance them-
gelves about it. The pressure upon G will be equal to
the weight of the bodies 4 and B ; it will therefore be the
same whether the bodies be placed at 4 and B, or one
body equal in weight to 4 and B together be placed at
G. The same may be said with respect to the bodies
4, B, C, D, &c. fig. 35, which are disposed uniformly
along the inflexible rod 4N, viz. that the pressure of 4
and V is the same as if both were placed at s ; of Band
M the same as if both were placed at ¢; and so on with
all the rest, so that the whole pressure of the particles
A, B, C, D, &c. is the same as if 4 + B + C + &ec. +
F + K + &c. were placed at s.

Pig. 34. Fig. 35.
ABd¢DE FXLMR
"L AG Bo —9—0—0—0—f—0—0>—0—0—0

It is evident that the number of particles 4, B,
C, D, &c. might be increased till they became con-
tiguous to each other; and the effect is the same
whether we consider them as connected together by
a straight bar void of gravity, or actually united to-
gether by the power of cokesion.

In the two preceding illustrations the centre of
gravity is also the centre of magnitude or dimensions ;
but this only occurs when the body possesses equal
density in all its parts: if,
for instance, the bar D, Fig. %.
fig. 36, instead of being of 3>1;¢:ng N
uniform density through- ° a ==
out, the end from f to ¢ —
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be plugged with lead, or any heavy material, and that
from ¢ to g is of wood, then f¢ will contain a greater
weight of matter than ge¢, and will consequently pre-
ponderate if the pin a be passed through the centre at ¢;
but if it be removed from ¢ to a point 4, which will
now be its centre of gravity, it will balance, though it
will now be seen that the centre of gravity no longer
coincides with the real centre or middle of the bar D.

The difficulty of balancing or supporting tall bodies
arises from the circumstance of the centre of gravity
always endeavouring to get under the point of suspen-
sion. In a suspended body, as the lowest situation
which the centre of gravity can find is when it is im-
mediately under the point of suspension, every body
hanging freely must have its centre of gravity directly
under this point.

The following is a simple practical
mode of finding the centre of gravity
of irregular masses, but with plane
surfaces. Thus, suppose A, fig. 37,
to be a piece of plank, and let a hole
be made at any of its corners, as a,
large enough to introduce a wire w,
which will support it, and upon which
it can move freely ; then the wire will
be the point of suspension, and a plumb-line with a
weight hung upon the same wire, as at @b, will re-
present the line of direction, and the centre of gravity
of the plank must be somewhere in the direction of
the plummet. The line of direction which the plum-
met takes on the piece of plank having been marked,
then make another similar hole in some other corner of
the body, as at ¢, and introduce the wite and Proree-
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line into this as before ; the line of direction now shewn
will be ¢d, and in some part of this the centre of gravity
must also be; but as it cannot be in two places, the
point ¢, where the two lines cut across each other, will
indicate the centre of gravity.

As a body of any kind cannot retain its position
unless its centre of gravity be supported, it follows that
stability will be preserved, if a line drawn from that
centre vertically towards the earth falls within the base
of the body in question: this may easily be shewn
when the bodies are portable ; but when they are fixed
they will not admit of this kind of calculation, and in
this case their centre of gravity can only be ascertained
by experiment or calculation®, in which the weight,
density, and situation of the respective materials must
be taken into account, and having so ascertained the
place of the centre of gravity, it may then be seen
whether such a body be firmly supported.

The same kind of calculation applies equally to lean-
ing towers and steeples, of which there are many ex-
amples in the world. The tower of Pisa in Italy is
one of the most remarkable among these, it being 182
feet high, and leans no less than 16 feet out of the
perpendicular ; and has done so for centuries, and will
probably endure centuries longer. - The two steeples
at Bologna also lean, and were described as doing so
before the year 1580. At Caerphilly Castle, near
Llandaff in South Wales, the south-east tower, which
is hardly 80 feet in height, is 11 feet out of the per-
pendicular. There are similar examples at Corfe Castle
in Dorsetehire, at Bridgenorth, and several other places.

* The mathematical student will find this subject treated of at
large in “ Gregory's Mechanics,” 3 vols,
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The tendency of a body to fall when the line of
direction falls without its base will be readily seen
from the following illustrations.

If a body (fig. 38) be placed at the edge "%
of a table, and on a plumb-line being sus-
pended from its centre of gravity the line
of direction falls within the base, the body
will stand, because the centre of gravity is
supported ; but if it fall without the base,
the body will fall, because unsupported.
(The latter experiment may be shewn by
reversing the position of the wood, as in
fig. 39.) If the line of direction fall ex-
actly upon the edge of the base, the body will be in
a state in which the slightest force will overthrow it
on that side at which the line of direction falls.

In the annexed figure (40), let a Fig. 40.
be the centre of gravity of the piece
of wood 4, the line of direction ab
will fall within the base; it will
therefore, for the reason above-stated,
stand. But if upon 4 another piece
of wood B be placed, the centre of
gravity of the whole will now be
raised to ¢; from which point if the
plumb-line be suspended, it will be
found that the line of direction falls without the base,
and therefore the wood falls. For the same reason,
when a boat is in any risk of being upset, it is dan-
gerous for the passengers to rise suddenly, as by so
doing they raise the centre of gravity, and thus in-
crease the probability of throwing it out of the line of
direction.
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In loading a cart or waggon the heaviest goods
should be placed at the bottom, and the lightest at
the top ; for the lower the centre of gravity is in the
cart and its load, the less will be the risk of its up-
setting.

Let A, fig. 41, be a heavily-laden wag-
gon moving along an inclined road; if the
heaviest goods are packed at the bottom,
and the lighter goods at the top, the centre
of gravity would be in a low position.
Suppose this position to be a, as represent-
ed in the figure; the line of direction ad
falls within the base, that is, between the wheels of
the waggon, which is consequently supported. If the
arrangement of the goods be such as to raise the centre
of gravity to b, the line of direction be falls just within
the wheel of the waggon, in this case it is liable to be
overturned by the slightest jerk ; and if the centre of
gravity be still higher, as at ¢, so that the line of direc-
tion cf falls without the wheel, the waggon will be
overturned by its own weight.

From what has been stated it is evident that the
stability of a body must be increased by lowering its
centre of gravity. The manner in which this may be
practically illustrated will be easily comprehended from

the annexed figure.

From a stick a, fig. 42, which Fig. 43.
of itself would fall, because its y
centre of gravity hangs over the L7
table BC, suspend a bucket &, T S

and fix another stick ¢, one end
in a notch at n, and the other
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against the inside of the pail at the bottom. Then the
bucket will be in equilibrium, as represented in the
figure ; for the bucket being pushed a little out of the
vertical by the stick c, the centre of gravity of the
whole is brought under the table, and is consequently
supported by it. .

The effect of placing the centre of gravity of a body
in a very low position is shewn in vibrating figures,
such as that represented in the following cut. For,
if the ball a, fig. 43, be removed, the horse will im-
mediately tumble, because unsupported, the centre of
gravity being in front of the prop Fig. 43
4 ; but on the ball being replaced, /-
the centre of gravity immediately
changes its position, and is brought
under the prop, and the horse is
again in equilibrium. When a man
stands upright, the centre of gravity
of his body is supported by his feet ;
if his feet be tied together, and his
arms tied to his sides, a slight inclination of the body
will carry his centre of gravity out of the perpendicular
and he will fall: on extending his legs he stands firm,
because his body is supported on a wider base. A
man in carrying a burden on his back leans forwards,
so as to bring the centre of gravity (of his body and
the load) within the basis of his feet. If he carries
the load on his head, he will walk erect; and when
carrying it in his arms he leans backwards. For the
same reason, when we ascend a hill we lean forward,
and on descending we lean backward. A large table
cannot stand firm on a single leg, unless the leg ter-
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minates in a tripod. When a man walks, he throws
his body a little forward in order to make the centre
of gravity fall in the direction of his toes, and assist
by that means the muscular action which propels the
body in the same direction. A quadruped never raises
two feet on the same side, because the centre of gravity
would then be unsupported. A body is stable or firm
in proportion to the breadth of its base; hence the
difficulty of sustaining a tall body like a stick or a
epinning-top upon its point: but it is difficult to upset
a cone, because the line of direction falls within the
middle of the base, the centre of gravity being low.
Rope-dancers, by means of a long pole loaded by
weights at the end, perform their feats of agility by
dexterously altering the centre of gravity upon each
new position which the body takes, so as to keep the
line of direction within the base; they fix their eyes
on some spot near the rope, and can immediately per-
ceive when it is necessary to alter their position. As
the centre of gravity is that point about which all the
parts of a body exactly balance each other, it is some-
times so situated as not to be within the body, but in
empty space. Thus, a hollow cone, as a common ex-
tinguisher, or any body of similar shape, would ob-
viously have its centre of gravity in the space within
it. Likewise a piece of wire twisted into the form
of a horseshoe, or of a ring, would have its centre
of gravity not in the wire, but in the open space
within it.

‘We have shewn that the broader the base is of any
body, and the nearer the line of direction is to the mid-
dle of it, the firmer it will stand. It is for this reason



CENTRE OF GRAVITY——MECHANICAL DECEPTIONS. 59

that a ball so easily rolls along a plane surface ; as in all
spherical bodies the base is only a point, Fig. 4

the smallest point will therefore be suf-
ficient to move the line of direction out  ,
of it. It is clear from this that a body

A, fig. 44, whose line of direction falls RN
within the base, will slide down the in-

clined plane ; but the body B, where the line of direction
falls without the base, will roll down.

Many mechanical deceptions are- practised by re-
moving the centre of gravity from its natural into an
artificial situation; thus, a cylinder C, fig. 45, placed
upon a slope or inclined plane 4B, Fig. 4.
will naturally descend, because its
centre of gravity is thereby approach-
ing the earth ; but if a plug of lead be ‘e
introduced at one side near the edge,
as at ¢, which must rise before the roller can descend,
the rise being contrary to gravity, its motion down
the plane will be arrested ; but if the plug of lead be in
the position d, then the cylinder would fall down to the
position ¢, and thus cause it to roll up hill by the action
of its weight. The same principle may be illustrated
by the following amusing experi- Fig. 46.
ment : place a piece of wood turned A@ B
in the shape of a double cone, fig. 46,
united at the base, upon two rulers joined at one end,
4, and opening a little way at the other, B, and raise
the open end 0 as to form an inclined plane ; then place
the piece of wood at the bottom of the inclined plane
and it will roll along to the raised end, appeanng to
ascend in the direction from 4 to B. This is, however,

do

B
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merely an optical deception, for the centre of the double
cone, which is its centre of gravity, really descends in
obedience to gravity.

A spinning-top cannot be made to stand upright on
its peg, owing to the practical impossibility of keeping
its centre of gravity vertically over the point of the peg:
if however, we spin the top, it will be balanced as long
as the rotatory motion continues, because the centre of
gravity in each revolution of the top assumes a variety
of positions, and has an equal tendency to make the top
incline in all directions round it ; these opposite tenden-
cies following in quick succession counteract each other
as effectually as if they acted simultaneously.

If an oval body be placed on a flat level surface and
put in motion, it will oscillate somewhat like a pendu-~
lum, because, when disturbed from its middle position,
its centre of gravity has risen and seeks to return; the
same may be said of the half of any solid globe; and
such will always come to rest with its plane face turned
directly upwards. This principle may be illustrated by
an amusing toy consisting of the half of a sphere made
of wood, upon which is placed the figure of a man made
of pith ; but where the feet should be, the figure has a
rounded smooth surface plugged with lead so low as
always to allow the figure to sustain an erect position,
g0 that whenever it is pushed down it will immediately
rise again.

In general the stability of a body depends upon the
position of the line of direction, and on the height
through which the centre of gravity must be raised
before the body can be overthrown. When a body is
in the act of falling, its centre of gravity passes through
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the part of a circle, the centre of which is at the extre-
mity of the base on which the body Fig. 47.
stands. Let 4B, fig. 47, represent a
square block of wood, the centre of gra- 6T~
vity being at G. To turn the wood , -
over the edge B, the centre of gravity
G would therefore describe the part of a circle, of which
B is the centre ; and as soon as the centre of gravity G
passes a perpendicular line over the cormer B, the wood
will fall by its own gravity.

This principle will be more easily perceived in the
figure of a pyramid. Let BAC, fig. 48, be a pyramid,
the centre of gravity being at G, Fig. 48.
which is evidently very low, and as % ~u
the base is broad, a considerable pro- ™
portion of its whole weight must be 8 ¢
raised before the pyramid be overturned ; for in order
to turn it over the edge B, the centre of gravity must
be carried over the arch G, and it will therefore be
raised through the height HE. If however the pyra-
mid were taller and its base narrower, the height HE
would evidently be less in proportion, and it would be
more easily overthrown ; the stability therefore of a
body, as before observed, depends upon the position of
the line of direction, and on the height through which
the centre of gravity must be elevated before the body
be overthrown.

There are certain particular figures, such as squares,
parallelograms, and circles, in which when they are
of uniform density the place of the centre of gravity can
easily be found : as it will be clear from the following
illustrations that the materials of the body are similarly
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distributed around this point, it must therefore be the
centre of gravity. Let the annexed figures, 49, 50, and
51, represent thin pieces of card or metal of uniform
density, and let them be divided respectively into two
equal parts by the straight lines, 4, B, C, D. Con-
ceive each of these figures to be resolved into lines of
particles equal and parallel to 4B, there will then be
the same quantity of matter similarly disposed on each
side of 4B ; if therefore 4B be supported, the parts
ACB, ADB, will balance themselves about it; the
centre of gravity will consequently be in the line 4B.
For the same reason, because all lines drawn parallel to
AB are bisected by CD, the centre of gravity will also
be in the line CD ; it must, therefore, be in their com-
mon point of intersection G.

Fig. 49. Fig. 50. Fig. 51.
o 4
D D D

The centre of gravity is also the centre of inertia, for
if a bar of wood of uniform density be lifted by its mid-
dle, the inertias of both ends are equally overcome, and
they rise evenly together ; but if the bar be lifted up by
a part nearer to one end than the other, the shorter end
will rise first, because the centre of inertia is in the
other. The centre of gravity or inertia, however, is not
always in the centre of the whole quantity of matter
which a body may contain; for if a weight of five
pounds A4, fig. 52, were af- Fig. 52,
fixed to one end of a stiff 4 B
wire or rod, and a weight 4 —°
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of only one pound B at the other, they would still be
balanced if supported on a point ¢ five times nearer to
the centre of the large weight than to that of the small
one ; but although the two bodies A and B are unequal,
yet their masses multiplied into their respective velo-
cities are equal, and consequently a balance will be pro-
duced. This fact is, however, explained more at large
in the next chapter.

If it is required to find the centre of gravity of two
unequal bodies 4 and B, Fig. 5.
fig. 53, we must find a 4
point in the line which
joins their centres of gravity, which is distant from the
centre of each body in the reciprocal proportion of their
masses,—that is, A ¢ must bear the same proportion to
¢B that B does to A4 ; therefore the product of 4 mul-
tiplied by 4 ¢ is the same as the product of B multiplied
by Be, the moment of each being equal; and as the
bodies 4B will balance one another upon ¢ if that point
be supported, ¢ is consequently the centre of gravity of
A and B.

Again, the centre of gravity of three bodies 4, B,
and Z, fig. 54, may be found Fig. 54
in like manner; as ¢ is the 4
centre of gravity of 4 and B, ©
then if Ec be joined, and ¢ E g
be divided in G, so that EG O
bears the same proportion to G'¢c as the sum of 4 and B
bears to E, the whole will balance on G; therefore G
is the centre of gravity of the three bodies 4, B, and E.
In this manner the centre of gravity of any system of
bodies may be found.

¢ 3

B
—

¢
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. The centre of gravity of a triangle may be found in
the following manner. Let 4 BC, fig. 55, Fig. 5.
be any triangle: draw A4 a, Cb, bisecting 4
the opposite sides, and G' the point of e
intersection will be the centre of gravity é ﬁc§
of the triangle. Let lines be drawn pa- T B
rallel to AB: then it is evident that each of these lines
will be bisected by Cb, and therefore the centre of gravity
of all of them will lie in C4. Now the whole triangle
may be considered as made up of lines parallel to 4B,
hence it appears that the centre of gravity of the triangle
will be in the line Cb; in exactly the same manner it
might be shewn that the centre of gravity will be in the
line Aa, and as it cannot be in two places it must be
situated at the intersection of Cb and A a, that is, at the
point G.
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CHAPTER VII.
THE MECHANICAL POWERS,

Tae Mechanical Powers are simple machines or in-
struments by means of which weights may be raised or
resistances overcome with the exertion of less power
or strength than is required without them.

‘When forces are so applied to a body as to counteract
the effects of each other, the body will be in a state of
equilibrium ; in this case we have only to consider the
relation of the forces which balance each other: this
branch of mechanics, as it treats of the action of forces
in equilibrium, belongs to the department called Statics.
‘When one or more forces act upon a body at rest so as
to produce motion, the direction, velocity, and duration
of the motion are considered. 'This branch of mechanics
belongs to the department called Dynamics.

Machines do not create power, but only convey or
modify it; they enable us to apply power in a conve-
nient and economic manner, and in a more advantageous
direction than if it were immediately applied to the
weight or resistance. If a man could raise to a given
height 100 pounds’ weight in one minute by the utmost
exertion of his strength, no machine could enable him
to raise 1000 pounds in the same spacs of time; the
mass must be divided into ten parts, and each raised
separately : whereas by means of machinery he is en-
abled to move the whole at once, requiring, however,
ten times the number of minutes in which he raised the
100 pounds.

F
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Suppose a man has occasion to lift a weight of 40
pounds from the ground and to set it upon a place three
feet high ; as this weight is easily managed, it might be
lifted to the place proposed by his hands. In this case
it is clear that the weight will move with a velocity
equal to the force, for it is evident that the weight held
in his hand will move as fast as his hand does. But if
it be required to lift a much heavier weight (say 600
pounds) to.the same place, it will be necessary to em-
ploy machinery, so that his force may be applied in such
a manner that the velocity with which it moves may
be as much less than that of the former of 40 pounds,
a8 the weight of 40 pounds is less than 600,—that is,
fifteen times less; but the weight being fifteen times
heavier, it will, from what we have proved in the fore-
going example, move fifteen times slower.

It is necessary to remark, that in the theoretical con-
sideration of machinery the various parts of the machine
are considered to be free from friction, and to be abso-
lutely inflexible ; they are also supposed to be without
weight or inertia. Cords and ropes are considered as
perfectly flexible; and when the machine moves, it is
supposed to suffer no impediment from the atmosphere.
In order to understand the application of a machine,
there are four things to be considered: 1. The force or
resistance to be sustained or overcome, and which may
always be represented by a weight; 2. The force or
power which is used to sustain or overcome that resist-
ance, as the force of men or horses, steam, &c.; 3. The
Jfulcrum, or prop; and 4. The velocities of the power
and resistance. The force or resistance which is to be
sustained or overcome is called the weight ; the force or
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power overcoming or sustaining this resistance is called
the power. .
The Mechanical Powers are three in number, viz.
¢ 1. The Lever.
2. The Pulley or Cord.
3. The Inclined Plane.

These are called by some writers the Primary Me-
chanical powers, and from two of them (the Lever and
Inclined Plane) three others are formed :

1. The Wheel and Axle, from the Lever.
2. The Wedge, from the Inclined Plane.
3. The Screw, from the Inclined Plane.

These may be called the Secondary Mechanical Powers.

Every species of machinery, however complex, may
be resolved into simple elements, which consist only of
the above six individual powers.

THE LEVER.

The Lever (from a Latin word signifying to lift) is
the simplest of all machines, and is only a bar of iron,
wood, or other material, supported on and moveable
round a prop called the fulerum.

There are three things to be considered in the lever;
the power, the fulcrum, and the weight. The power is
the force applied, which raises and supports the weight ;
the jfulerum is the prop or support; and the weight
is the resistance or burden to be raised or sustained.
Strictly speaking, the power and the weight are both
forces, and they are so named in order to distinguish
the one from the other.

When a lever moves about an axis like a weighing-
beam, the different parts have different velocities accord-

F2
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ing to their respective distances from the axis or centre ;
the truth of this will at once be perceived by the follow-
ing illustration. :

Let AB be a straight lever moveable Fig. 56.

round the fulerum ¢; the arms A4¢ and

¢B will describe arcs of circles round 0\

the point ¢, which will be proportionate ' B
to the length of the arms. The velocities

also of the arms will be proportionate
to the space gone over, that is, to the arc described ;
therefore in proportion as the arm ¢ B is longer than the
arm Ac, so much will the velocity of the point B be
greater than that of the point 4, or in other words the
longer the arm the greater will be its velocity.

In the annexed figure, 57, Fig. 7.
let the lever 4B be sup-
ported on the fulecrum C, the \
arm CB being three inches 4 \n
in length, and the arm CA e
one inch. Suppose at the I(‘ 1
end 4 we suspend a weight 09 1
of three ounces, and at the end B another weight of one
ounce, the weights and distances will be in reciprocal
proportion. In this case then, the lever ACB will in-
cline neither way, but remain in a horizontal position ;
for at the same time that the short arm, being pulled
downwards by the weight, describes the arc AD, the
point B being lifted up by the same force will describe
~ the arc BE; and as the arcs AD and BE are pro-
portional to AC and CB, they will be as 1 to 3 : there-
fore the weight at A, which is three ounces, moves over
the space A.D, which is as 1, at the same time that the
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weight at B, which is one ounce, moves over the space
BE, which is as 3; and as these two tendencies coun-
teract or destroy each other, the two weights tending
contrary ways with equal moments, they can neither.
rise nor fall, but must remain in equilibrium.

Suppose the lever AB, Pig. 58.
fig. 58, to be turned on its K4
axis, or fulerum, so as to 4 Fo
come into the situation DC;. ¢ .7
astheend Disfarthestfrom % .
the centre of motion, andas 2™
it has moved through the arc 4D in the same time ag
the end B moved through the are BC, it is evident that
the velocity of 4 must have been greater than that
of B. But as the moment is the product of the amount
of weight multiplied by the velocity, the greater the
velocity the less the amount of weight necessary to get
the same product. Therefore as the velocity of 4 is the
greatest, it will require less matter to produce an equi-
librium than B.  As the radii of eircles are in proportion
to their circumferences, they are also proportionate to
similar parts of them: thérefore as the arcs 4D, CB,
are similar, the radius or arm DE bears the same pro-
portion to EC that the are 4D bears to CB; and as
the arcs 4D and CB represent the velocities of the ends
of the lever, being the spaees which they moved over in
the same time, the arms DF and EC may also represent
these velocities, It is therefore clear that an equilibrium
will take place when the length of the arm A £ multi-
plied into the power A equals ZB multiplied into the
weight B; and consequently that the shorter EB is,
the. greater must be the weight B,—that is, the power
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and the weight must be to each other inversely as the
distances from the fulcrum. Thus, suppose AE, the
distance of the power from the fulerum, to be 10 inches,
and A B, the distance of the weight from the fulcrum,
to be 5 inches, also the weight to be raised at B to be
4 ounces, then the power to be applied at 4 must be
2 ounces, because the distance of the weight from the
fulcrum being 5 inches multiplied into the weight, which.
is 4 ounces, the result is 20 (5 x 4=20); therefore 10,
the distance of the power from the fulcrum, must be
multiplied by 2 to get an equal product (10 x 2=20),
which will produce an equilibrium.

There are three kinds of levers, differing according
to the relative positions of the power, the weight, and
the fulcrum.

In a lever of the first kind the fulcrum is between the
power and the weight.

In a lever of the second kind the weight is between
the fulerum and power.

In a lever of the third kind the power 18 between the
fulerum and weight.

The principal law of the lever is this '—The power
is to the weight inversely as the distances from the ful-
crum ; that is, the smaller the power is which shall be
in equilibrium with the weight, the greater must be its
distance from the fulerum. The power is in equilibrium.
with the weight when its moment is equal to the mo-
ment of weight.

First kind of Lever.

The lever of the first kind, where the *fulcrum is
between the power and the weight,” is. principally used
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for raising heavy weights, or for loosening large stones;
and when used in the latter way, it is generally called a
crowbar or handspike. Fig. 59 is a re- Fig. 5.
presentation of the first kind of lever, p :
in which 4 is the end to which the B g
power or force is applied, F is the prop or fulcrum, and
B is the resistance or weight to be raised. According
to the rule already explained at p. 53, the longer the
acting part of the lever is (represented in the figure
from F to A), the less will be the power required to
move the weight. In the same figure, if AF be twice
as long as FC, then the lever is said to gain a power of
two ; so that, whatever the weight of B is, the power
required at A to move it will be only half as much as
would be necessary to move it without the aid of the
lever. If the fulerum F be removed nearer to the
weight B, so that 4 is ten times the length of FC,
then a power of ten would be gained ; and so on. In
this case, however, A would descend ten times as far as
€ would rise, and consequently a very small motion
would be given to the weight B. Fig. 60.
A BC, fig. 60, is another representa-
tion of this kind of lever, in which 1o e J_:%
P

B is the fulcrum. From 4 to B is

the long arm of the lever, and from W
B to C is the short arm. P is the e

power pressing down the long arm at 4. W is the
weight suspended from the short arm at B.

-The object of this lever is to cause P, a small weight,
to balance or overcome W, a much heavier weight,
In all such cases the power will sustain the weight in
equilibrium if its moment be equal to that of the weight.

u)
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The moment of the power is obtained by multiplying
the power by its distance from the fulcrum; and the
moment of the weight by multiplying the weight by its
distance from the fulcrum. Thus, if the number of.
ounces in P, being multiplied by the number of inches
in AB, be equal to the number of ounces in #, mul-
tiplied by the number of inches in BC, equilibrium will
be the result. For example, suppose the weight P to
be 4 ounces, multiplied by the distance from 4 to B,
which is 6 inches, the product is 24; and if the weight
W be 24 ounces, multiplied by the distance from C to
B, which is 1 inch, the product is also 24 ; the lever is
consequently in equilibrium. In like manner, if the
weight of 24 pounds be suspended at the extremity of
the short arm of the lever, (2 inches from the fulerum,)
and I wish to know what amount of power it is ne-
cessary to suspend at the end of the long arm of the
lever, I multiply the weight 24 by its distance from the
fulerum, which is 2; its moment therefore will be 48
(24 x2=48). I then divide this product by the num-
ber of inches in the long arm, which is 6, and the result
is 8, which is the power required (6 x 8 =48) to be sus-
pended at the end of the long arm in order to balance
the weight 24, From the above principles the following
rule may be deduced :—Multiply the weight by its
distance from the fulcrum, and the power by its distance
from the same point, and if the products are equal, the
weight and the power will balance each other. It there-
fore follows that when a small power is required to
raise a great weight, it will be necessary either that the
power be at a great distance from the fulcrum, or that
the weight be brought very near it, The principle in



MECHANICAL EFFICACY OF -A MACHINE. 73

mechanics which produces this phenomenon is called
the Law of Virtual Velocities, which is, *“ That a small
weight, descending a long way in any given length of
time, is equal in effect to a great weight descending a
proportionally shorter way in the same space of time.”
In other words, what is gained in velocity or time is lost
in expenditure of power.

The mechanical gfficacy of a machine depends on the
proportion of the weight to the power, and is said to
be greater or less according as this proportion is greater
or less. Thus, if in & lever a power of 1 pound support
a weight of 15 pounds, the power of the machine or
its meckanical efficacy is 15, 1If a power of 2 pounds
support a weight of 24 pounds, the power of the ma-
chine is 12, 2 being contained in 24 twelve times.

- The mechanical efficacy of any lever may be varied
at pleasure by changing the positions of the power and
the weight with respect to the fulerum. Whatever be
the proportion of the power and weight in any machine,
a lever may be assigned in which the power and weight
will have the same proportion. Such a lever may be
ccalled, in relation to that machine, an equivalent lever.
s The condition of equilibrium in the straight lever
being, that, the. product of the power multiplied by its
distance from the fulcrum should be equal to the product
of the weight multiplied by its distance from the ful-
crum, it follows that the power may be lessened by in-
creasing its distance from the fulerum. In like manner,
if the distance of the weight from the fulcrum be dimi-
nished until the product of the weight multiplied by
the distance becomes equal to the power multiplied by
#ts distance from the fulcrum, equilibrium will ensue.
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In calculating the proportions between the power and
the weight, we must be careful to consider the respective
lengths of the long and short arms of the lever. Itis
indifferent what units of weight and distance are taken,
provided they be the same at both ends: if inches be
the unit of length of the short arm, inches must also be
the unit of length of the long arm. In like manner,:if
ounces be taken as the unit of weight for one &nn, it
must also be taken for that of the other.

The see-saw is an illus- - Fge.
tration of the first kind of __ %@ 4 . . %ty
lever, If two boys (one :
being heavier than theother) '
place themselves at each extremity of the ph.nk the
heavier boy will find himself obliged to move nearer
the fulerum or prop A, in order that the plank may be
in equilibrium. = Suppose the plank to be 8 feet long,
and let the weights a and b represent the boys, the
small weight (50 pounds) is 4 feet from the fulcrum,
the moment of it is therefore 200 (50 x 4=200); and
as the large weight is 100 pounds, it must only be 2
feet from the fulerum to balance the other, because
2x100=200: it therefore follows that, if the arm' of
the lever which sustains the weight is 2, 3,. or 4 times
shorter than the other, it is necessary that the weight
at the extremity of the long arm be 2, 3, or 4 times
lighter, as the case may be, to establish equilibrium. ..
. Many instruments in common use are on the principle
of this kind of lever. A long lever turning on a strong
iron pin is used by artillerymen in working cannon
during battle. .

The handspike or crowbar is genenlly used. by masou,




FAMILIAR ILLUSTRATIONS, 75

builders, &c. for lifting heavy weights through small
spaces. A short crowbar is used by thieves in breaking
open doors, or wrenching off locks and hinges.

A poker used for raising the coals in a grate is an
instance ; the bar is the fulerum, the hand the power,
and the coals the weight or resistance to be overcome.
In all these cases power is gained in proportion as the
distance from the fulerum to the power or part where
the strength is applied, is greater than the distance from
the fulerum to that end under the stone or weight. It
is evident that if the long and short arm of the lever
be equal, or, in other words, if the fulcrum or prop be
exactly midway between the power and weight, no ad-
vantage can be gained by it, because they move through
equal spaces in the saine time: and as it has been shewn,
that whenever advantage or power is gained, time must
be lost; no time being lost under these circumstances,
consequently no power can be gained. A pair of scissors
consists of 2 levers of this kind united in one common
fulerum. Thus, the point at which the 2 levers are
riveted together is the fulcrum; the fingers are the
power, and the substance to be cut affords the resist-
ance ; the longer therefore the handles, and the shorter
the points of the scissors, the more easily you may cut
with them. Snuffers are levers of a similar description,
8o are most kinds of pincers, the power of which con-
sists in the resisting arm being very short compared
with the acting one.

- The common balance is a lever; the fulcrum being
the point on which the beam of the scales rests, and the
weights in the scales are the two forces. This is one of
the most interesting and useful applications of the lever.
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When equal weights are placed in each scale the beam
will maintain its horizontal position, because the dis-
tances from the fulcrum when multiplied by the equal
weights being in both cases the same, equal products
will be the result, and consequently the equal weights
will tend equally to move the scales in opposite directions
round the pivot, and thus destroy each other’s effects,
and the whole machine will therefore settle in the same
position which it had when the scales were empty.
It is evident that the balance will only maintain a ho-
rizontal position when the scales have equal weights;
for if one weight be greater than the other, the beam will
always incline in the direction of the greater weight.

Balances are not unfrequently misconstructed for
fraudulent purposes, by making the arm from which
the substance to be weighed is suspended longer than
that from which the weight hangs, and thus a pound
weight will be balanced by a substance in the other
scale weighing as much less than a pound as that arm
is shorter than the other. The fraud may be detected
by transposing the substance to be weighed and the
weights. If the object be to ascertain the true weight
of the substance, it may be found by the following rule:
“Find the weights of the body by both scales, multiply
them together, and then find the square root of the
product, and this will be the true weight.” Thus, sup-
pose a substance weighs 12 pounds in one scale, and in
the other only 8} pounds; 12 multiplied by 8% gives
the product 100, the square root of which is 10, for
10 multiplied into itself gives 100: therefore the true
weight of the substance is 10 pounds.

The st¢el-yard, which was in use among the Romans,
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and by some writers is called the Roman balance, is
another example of this kind of lever. It consists of a
lever with a long and short arm: a graduated beam is
moveable on the fulcrum or Fig. 6.

arm; u is the scale to re-
ceive any article to be weighed; P is a small weight
moveable on the graduated beam. In proportion as the
weight in the scale is heavy, so is the weight P moved
along to a greater distance from the fulcrum ; and when
it is moved to a point where it balances the weight in
the scale, the figure on the beam denotes the amount of
the weight: for instance, if P be one pound, and be
suspended from the division at 8, it is evident that it
will balance a weight in % 8 times P or 8 pounds.

The Chinese are in the habit of weighing small sub-
stances by a light steel-yard; it consists of a wooden
rod of about six inches in length, with a silk cord pass-
ing through it at a particular part, and knotted below
to serve as a fulcrum, and with a sliding weight on the
long arm, and a small scale attached to the short one.

The Danisk balance, fig. 63, is a Fig. 63.
steel-yard in which the fulcrum is
moveable instead of the weight. Its
construction is very simple, being nothing more than a
straight bar of iron with a weight fixed at one end, a
hook at the other, and a ring moveable along it, which
serves as a fulcrum, and from which the whole is sus-
pended. The substance to be weighed is suspended
from the hook, and the fulcrum moved to a position
which produces equilibrium ; the weight is then ascer-
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tained by the divisions marked on the bar. This in-
strument may be graduated experimentally by suspend-
ing from the hook successively 1, 2, 3, &c. pounds, and
ascertaining the position of the fulcrum which will pro-
duce equilibrium.

In making experiments upon the lever, a straight
beam of wood divided into equal parts and supported in
the middle on a pin, will be found the most convenient
apparatus. The following are a few experiments which
may be shewn by means of this apparatus; it will be
obvious to the learner that they may be altered at
pleasure by varying the weights and distances from
the fulerum:

Two equal forces when applied perpendicularly to a
straight lever will have the same effect as if the joint
amount of the two forces were applied at the middle
point between them. Let AB be a Fig. 64
straight lever, having the arms Ac,

Be, equidistant from the fulcrum e,

the lever will therefore be balanced 5
on ¢. Suppose the lever to be divi-

ded into inches, suspend a weight E, —Le
consisting of six ounces, at a distance of three inches
from ¢, and on the other side of the fulcrum suspend
another weight F, consisting also of six ounces, at three
inches from ¢; it need scarcely be said that the lever
will still be in equilibrium: but the same result will
ensue, if, instead of suspending the weight & or F of
six ounces, we suspend two weights of three ounces
equally distant on each side of either; and it does not
alter the effect of these two weights how far from G
or H they be hung, provided they be at equal distances.

3 I

E
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- In like manher, if several weights act upon different
sides of the falcrum, equilibrinm will be the result, if
the sum of the moments of all the weights which tend
to turn it in one direction be equal to the sum of the
moments of all the weights tending to turn it in another
direction. Thus, in fig. 65, suppose Fig. 6.
on one side the fulcrum there be sus-
pended three weights; a weighing
two ounces at a distance of one inch,
b of three ounces at a distance of two ¥ ¥ j|®% ¢
inches, and d of four ounces at a dis-
tance of three inches; then
' the moment of 4 is 2x1 or 2
the moment of b is 3x2 or. 6
and the moment of & is 4x3 or 12

the sum of all the moments will therefore be 20

If on the other side of the lever we suspend two other
weights ; £ weighing eight ounces at a distance of two
inches from the fulcrum, and F of four ounces at a dis-
tance of one inch ; then

the moment of £ is 8x2 or 16

the moment of F is 4x1 or 4

20.

Therefore the sum of the moments in each case being

the same, the lever will consequently keep at rest.
Suppose a weight @ of six ounces, Fig. 66.

fig. 66, be suspended on the lever s

at a distance of two inches from the

fulcrum ¢, then if ¢two weights &, d of

three ounces each be suspended at f,

54 d a
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at a distance of fwo inches from the fulcrum on the
opposite side, equilibrium will ensue: but suppose each
of these two weights to be moved in opposite directions
from £ at the distance of two inches, then the weight d
will be suspended exactly on the point ¢, and will
evidently have no effect in turning the lever either way,
and the weight b alone will balance a ; because b having
a weight of three ounces, and being four inches from
the fulcrum, its moment is consequently 12 (3x4=12),
which is equal to the moment of a, or six ounces multi-
plied by two inches, its distance from the fulecrum.

It is plainly seen from the foregoing examples that
if the number of ounces in the weights multiplied by
the number of énckes in the distances be equal on each
side of the fulcrum, the lever will be in a state of equi-
librium. This leads us to a general property of the
straight lever, viz. “ Any two weights tending to move
a straight lever in different directions, and acting per-
pendicularly upon the arms, will balance each other,
provided the product of the numbers representing the
weights and distances on each side of the fulcrum is the
same.”

Second kind of Lever.

In alever of the second kind the weight is between
the fulerum and the power. In Fig. 67.
the annexed figure the line 4 to
B represents the long arm, and B
to F the short arm; W is the
weight to be raised, and P is the
power. The advantage gained by
this lever, as in the first, is as
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great as the distance of the power from the fulcrum
exceeds the distance of the weight from it. Thus, if
the power P be four ounces, at a distance of six inches
from the fulcrum, it will balance a weight /¥ of twenty-
four ounces at a distance of one inch from the fulerum,
the moments in both cases being the same (4 x 6 =24,
and 24x 1=24). If the weight W were half-way
between F and A4, half of its weight would be support-
ed by the fulerum F, and the remaining half would be
balanced by the power at P ; but in this case the power
must be twelve instead of four ounces; and whatever
the weight be, if midway between F and A, it will re-
quire but half that weight to balance it at P. As the
power P of four ounces acts over the wheel immediately
above it, the axis of the wheel will sustain twice this
power, or eight (as we shall have occasion to shew in
explaining the nature of the pulley); and if we would
know ‘the amount of pressure on the fulcrum F, we
must subtract the power 4 from the weight 24, which
leaves 20 ; it therefore follows that the total pressure
on the fulcrum and the axis of the wheel is 28, which
is equivalent to the united forces of the power and
weight. ~

A familiar example of this kind of lever is that of
two men carrying a load between them by one or more
poles, as a sedan-chair, or as two brewers darrying a
cask of beer slung from a pole. In both instances the
principle is the same; for either the back or front man
may be considered as the fulcrum, and the other as the
power. If the barrel be suspended from the centre of
the pole, each man will sustain exactly half the weight ;
but if the barrel be nearer to one man than the other,

G .
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the man who bears the shorter end of the pole will
sustain a greater weight than the man bearing the
longer end. Suppose the cask to weigh 3 cwt. and
that the point at which it is suspended from the pole
is 3 feet from the shoulder of the first, and 6 feet from
the shoulder of the second; then the first man will
sustain a pressure twice as great as the other man does,
for he carries 2 cwt. while the other carries but 1 cwt. ;
for 2 multiplied by 3 is equal to 1 multiplied by 6.
Another instance of this kind of lever is when a bar
is used to raise a heavy bale of goods, by lifting one end
of the bar with the hand while the other end rests on
the ground. In the annexed figure, Fig. 6.
68, the ground is the fulerum, the M
force exerted by the hand is the
power, and the bale is the weight.

The cutting-knife used by druggists and patten-
makers to cut drugs or the wood they use is a lever
of the second kind. The joint 4, fig. 69,  Fig. &.
being the fulcrum, the power is applied ’
at the handle B, and the weight or re- A5\
sigtance is D, the wood or drug to be cut.

A door turning upon its hinges is a lever of this
kind. The door is the weight, its hinges the fulcrum,
and a person opening or shutting the door by the handle
applies the power; and as we have before shewn that
the farther the power is from the fulerum the more
easily may the weight be moved, it is evident that .
there would be considerable difficulty in pushing open
a heavy door were the hand applied to the part near
the hinges, although it may be opened with the great-
est case in the ordinary way. The consideration of this
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kind of lever explains why a finger caught near the
hinge of a shutting door is so much injured; the mo-
mentum of the door acts by a comparatively long lever
upon a resistance placed very near the fulcrum.

To this kind of lever may be reduced oars, rudders of
ships, and common cutting-knives fixed to the working
bench. In the case of a man rowing a boat, the water
is the fulcrum, the man at the oar is the power, and the
boat is the weight. A pair of nut-crackers is an ex-
ample of the double lever of the second kind ; the joint
of the crackers is the fulcrum, the nut to be cracked
affords the weight or resistance, and the hand which
presses the two arms of the crackers together is the
power.

Again, two horses may be so yoked to a carriage
that each may be made to draw a part proportional to
his strength, by dividing the cross-bar in such a manner
that the point at which it is fastened to the vehicle
may be as much nearer to the stronger horse than to
the weaker, as the strength of the former exceeds that
of the latter.

The principle of the wheelbarrow may be referred to
a lever of this kind. The wheel pressing on the ground
may be considered as thd fulcrum, the load in the barrow
is the weight, and the two handles lifted up by the man
represent the power ; the nearer the goods in the barrow
are placed to the wheel, the more easily may the barrow
be lifted, because the power is applied farther from the
fulerum than the weight is.

G2
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The third kind of Lever.

In the lever of the third kind, the Fig. 70.
power is placed between the fulcrum
and the weight. In the annexed
figure (70) 4 is the fulcrum, P the N
power, and W the weight : in this
case the weight being farther from
the fulecrum than the power, must pass through more
space than it ; consequently the power must be greater
than the weight, and as much greater as the distance of
the weight from the fulcrum exceeds the distance of the
. power from it,—that is, to balance a weight of four
ounces at a distance of six inches from the fulcrum,
there will be required a power of twelve ounces if ap-
plied at two inches from the fulcrum. Since then a
lever of this kind is a disadvantage to the moving power,
it is but seldom used, except in cases where velocity
and not force is required. This Fig. 71.

is exemplified in the foot-board |4 :
of the turning-lathe, fig. 71: the 7
ground on which one end of the

plank or board rests is the fulcrum, the foot of the
workman pressing on the board at a short distance from
the fulcrum is the power, and the resistance is at the
further extremity of the plank, which is pulled up by
means of the string 4, attached to a crank above, as
fast as it is pressed down by the workman, and thus a
constant action is easily produced.

As this lever is used only when a great space has to
be traversed quickly by the long arm, the power must
necessarily always be greater than the weight., When a

A
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ladder, being fixed at one end against a. wall, is raised
into a perpendicular or vertical position by the strength
of a man’s arm, it is an example of this kind of lever.
But the use of levers of the third kind is most beauti-
fully shewn in the animal body, where the Creator has
supplied animals with a means to move the limbs with
great velocity, by applying the power of the muscles
very near the centre of motion, but at the same time
giving such a power to the muscles as to enable them to
raise the limbs even when great weights are applied at
their extremities ; as for example, when we lift weights
with our hands, or break hard bodies with our teeth:
this is of great convenience to the animals, for in almost
every case facility and despatch is rather an object than
the exertion of great force. To take the arm as an in-
stance ; when we lift a weight by the hand, it is effected
by means of muscles coming from the shoulder-blade
and terminating about one-tenth as far below the. elbow
as the hand is : now, the elbow being the centre of mo-
tion round which the lower parts of the arm turn, the
muscles must exert a force ten times as great as the
weight that is raised. At first view this may appear a
disadvantage, but what is lost in power is gained in
velocity, and thus the human figure is better adapted
to the various functions it has to perform. In the
annexed figure (72) F represents the elbow-joint or ful-
erum ; P the power acting over or from the shoulder S,
through the contracting muscle M, and B Fig. 72.

the arm from the elbow to the hand ; and s
W represents the weight placed in the )
hand. Themuscle J, on being contracted % =5
in a slight degree by the impulse of the ¥
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will or power P, immedjately raises the hand in which
is placed the weight or resistance towards the shoulder,
bending the arm upon the elbow-joint or fulerum F.

The sheep-shears, fig. 73, are two Fig. 73.
levers of the third kind, the fulcrum P
for both being at the springing bow A ¢
at C; the hand applied at PP is the 2

power, and the wool to be cut supplies the resistance.
The two legs of a pair of tongs are likewise levers of
this kind.
In a lever of the second and third kind, if a power
support a weight, their distances from the fulerum will
in both cases be in reciprocal proportion. If in the an-

nexed figure (74,) we sup- Fig. 4.
pose the line ACB to repre- 2 . o)
sent a lover of the second 2 4  C B

kind, and that a power at B supports a weight at C,
then the power and the weight are to each other in reci-
procal proportion of their distances; that is, the weight
C of 8 ounces, at a distance of 2 inches from the fulcrum
A, bears the same proportion to the weight B of 2
ounces at a distance of 8 inches from the fulcrum (8 x 2
=2x8). Let us imagine the lever prolonged to D, so
that 4D be equal to A4C. It was shewn before that
equal velocities caused in equal bodies must be produced
by equal powers. But the weight D equal to the weight
C, and being at an equal distance from A, will move
with the same velocity as C' when impelled by the
power B ; therefore the same power that can support
D will support C also. But the line DAB is a lever of
" the first kind, in which the power B is to the weight D,
as AD is to AB. Therefore, since the same power
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supports C equally, it will also be to the weight C, as
A4D is to AB.

The difference between the second and third kind of
levers may be shewn by the following illustration. For
if in the same figure we suppose the line AB capable by
means of a force or forces applied to it to revolve round
the point or fulcrum 4, it is a lever of the second kind,
where two contrary forces are applied to it at C and B,
the one at C impelling the line downwards, and the
other at B pushing it upwards ; (that is, the weight
acting at C, and the power at B;) and to make these
opposite forces balance each other, the quantity of each
force must be in reciprocal proportion to its distance
from A. But if we suppose the case inverted, and that
at C the force acts upwards, and at B downwards, it
is then a lever of the third kind, where the power acts
at C, and the weight at B ; but it is obvious that,
although the direction of the forces be altered, their
quantity must remain the same in order to balance each
other,—that is, the power will be to the weight in
reciprocal proportion to their distances from the fixed
point or fulcrum 4.

THE COMPOUND LEVER.

A compound lever is formed by connecting several
levers together so as to operate one upon the other ; they
are generally used when great power is required, and it
is inconvenient to construct a long lever. The annexed

figure (75) represents a com- Fig. 75.

pound lever consisting of E v

three levers of the first kind, [ ? ~ é
each working on its own

P W
fulorum. The object of the
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machine is to enable a small force at P to move or
balance a large weight at #. In calculating the action
of the compound lever, the same rule applies which has
already been given for the simple lever, viz.: “Multiply
the weight on any lever by its distance from the ful-
crum; then multiply the power by its distance from
the same point; and if the products are-equal, the
weight and the power will balance each other.” The
manner in which the effect of the power is transmitted
to the weight may be shewn by. considering the effect
of each lever successively. The power at P produces
an upward force at &, which bears to P the same pro-
portion as PF to EF. Thus, if we suppose the three
levers to be of the same length, the long arms being 8
inches, and the short arms 2 inches, 1 pound at P will
balance 4 pounds at E'; because the long arm being 8
inches, being multiplied by the power P of 1 pound,
gives the product 8, and the short arm being 2 inches,
requires to be multiplied by 4 pounds to produce the
same result ; a power of 4 pounds is thus applied to the
long arm of the second lever, which being also 8 inches
in length, gives a product of 32, and the short arm being
2 inches, the .weight necessary to produce the same
result is 16 ; therefore a power of 16 is applied to the
third lever, the long arm of which being likewise 8
inches in length, the result is 16 x 8 = 128, and the short
arm being two inches in length, must be multiplied by
64 to produce a like result ; therefore 64 pounds is the
weight which would be supported at W by 1 pound
at P.

The above explanation of a compound lever, consisting
of three levers of the first kind, will be found equally to
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apply to any system of compound levers. The annexed
figure (76) is a system of Fig. 76.

levers of the second kind; ’

and if the long and short P

arms of the three levers be

the same as in the foregoing

illustration, a power of 1 pound will likewise balance a
weight of 64 pounds.

It will be seen from the above remarks that the effect
of any compound system of levers may be found by
taking the proportion of the weight to the power in
each lever separately, and multiplying these numbers
together; and the principles of the calculation will not
be altered if they be some of one kind and some of
another. The adjoining illustration Fig. 77.
(fig. 77) represents a compound lever, Aq—e———r—
consisting of one lever of the first
kind, and two of the second. 4B is
a lever of the first kind, CD and
EF being both levers of the second
kind. We will suppose the lever 4B N
to be 5 inches in length, 1 pound therefore at 4 will
balance 5 at B; as this lever is connected with the
second lever CD, there will consequently be a power of
5 pounds acting at C; and if the length of the lever CD
be 6 inches, the power of 5 pounds at C will sustain a
weight of 30 pounds at D (5 x6=30). This second
lever being in like manner connected with the third
lever EF, there will be a power of 30 pounds acting at
E, and the length of this lever being 4 inches, a weight
of 120 pounds may be balanced at F (4 x 30=120).
The compound lever is employed in the construction of
weighing-machines, and particularly in cases where gyeat

e —
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weights are to be determined in situations where other
machines would be inconvenient, on account of their
occupying too much space. The weighing-machine at
toll-bars is an example.

Two levers of the first and second kinds are sometimes
joined together by a connecting rod BC, as in the ac-
companying figure (78). In this Fig. 78.
case the resistance B, transmitted to c F
C by means of the power at P, is p
such that P multiplied by its dis- 2
tance from the fulcrum F, is equal
to the resistance B multiplied by the distance BF ; and
the resistance B, transmitted to C, (which may now
be considered as a power,) if multiplied by the distance
CF’, must be equal to DF’, multiplied by D, to pro-
duce equilibrium.

The levers used for raising carriages to take off their
wheels are of this class.

1
F

ON THE BENT LEVER.

Having considered the various kinds of straight levers,
we will now take a more general view of this machine,
and consider it as any solid body having a fixed axle on
which it is capable of turning. This principle being
shewn, the bent lever may be more easily understood.

Let ABC, fig. 79, be a section of Fig. 7.
any solid body, moveable on a fixed
axis G, perpendicular to the paper.
Through G suppose the horizontal line
HGH to be drawn, and let the weight
W, to be sustained, be applied at F,
and the power P which supports it be

:pﬂial at C. The power will sustain
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the weight in equilibrium, if the number of ounces in
the power, multiplied by the number of inches it is dis-
tant from the centre G, is equal to the number of ounces
in the weight multiplied by the number of inches in its
distance from the centre. For instance, if the power P
be 3 ounces at a distance of 6 inches from the axis G, it
will sustain W of 9 ounces at a distance of 2 inches
from it:3x6=9x2,
Again, let a weight W, fig. 80, be Fig. 80,

suspended by a cord from the point

F': this weight will evidently have 45

a tendency to turn the body round E

in the direction ABC. Let another f, (!
cord be attached to the point ¢, and w

being carried over a wheel E, let a weight P sufficiently
heavy to turn the body round the axis in the direction
of CBA balance the opposite tendency of W. If the
weights # and P be then ascertained, and also the per-
pendicular distances GF and Ge of the cords from the
axis be exactly measured, it will be found that if the
number of ounces in the weight P be multiplied by the
number of inches in G ¢, and also the number of ounces
in W by the number of inches in GF, equal products
will be the result.

It is evident that any other denominations of weight
and distance besides ounces and inches may be used,
provided the same denominations be used both with
respect to the weight and power. It follows from these
examples that the effort of any force to turn a body
round an axis, is to be measured by multiplying the
force by the perpendicular from the axis on its direction.
The product so obtained is called the moment of the
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force round that axis; it is clear that if the moment be
increased or decreased in any proportion, the efficacy of
the force in turning the machine round the axis is in-
credsed or decreased in exactly the same proportion: or
if the sum of the moments of the forces which tend to
turn the body round in one direction be greater than the
sum of the moments of the forces which tend to turn it
in the opposite direction, the body will move round its
centre in the direction of the former.

The mechanical advantage of the power and the
weight of any lever, whether bent or straight, is always
represented by a line drawn from the fulcrum at right
angles to the direction in which the forces act.

Let ACR, fig. 81, represent a bent Fig. 81.
lever, which balances itself on C, and
having two forces P and W applied
to it at the points A and R, in the
directions 4P, RW; if a line be
drawn from the fulerum perpendicular to the direction
of the power P, that is, from C to G, and also a line
perpendicular to the direction of the weight, which is
from C to R, the effect produced may be calculated upon
the same principle as that of the straight lever,—for
instance, if the distance from C to G be 6 inches, and
C to R 3 inches, 2 ounces at P will balance 4 at W
(6x2=4x3). Any two forces therefore, tending to
turn a bent lever in different directions, will balance
each other if the moments of the two forces be equal.

In the foregoing example we have considered the
Power and weight as acting on the lever, in directions
Perpendicular to its length, and parallel to each other;
but this is not always the case, as both the power and

N
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weight often act obliquely. Let Fig. 82.
AB, fig. 82, be a lever whose
fulcrum is F, and let the power
act obliquely in the direction
AR, and the weight in the di-
rection BS. In order to cal-
culate the power of this lever, we must draw lines as in
the foregoing example; if therefore, the lines BA, SB
be continued, and perpendiculars FC' and FD drawn
from the fulcrum to these lines, the moment of the power
may be found by multiplying it by the line FC, and the
moment of the weight by multiplying it by the line
FD: if P be 4 ounces, and FIC 6 inches, while W is
8 ounces, and FD 3 inches, equilibrium will be the
result, for 4 x6=8 x 3.

The following cut, fig. 83, repre- Fig. 8.
sents the power and weight acting m
obliquely, as in the above illustra- AR
tion, but instead of the lever being a ¢
straight one, it is bent. The rule of T w

calculation is not affected by the
lever being bent ; the power therefore of this lever may
be ascertained on precisely the same principle as that of
fig. 82. Let the line DA be continued, and from F
draw a line perpendicular to it, this line will represent
the long arm; in like manner continue the line GB,
and from F' draw another line perpendicular to it, this
line represents the short arm: the moments of the power
and weight may be found as in the former instance.
Sometimes the lever is bent in such a manner that
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the arms are perpendicular to each other; the fulcrum
F, fig. 84, being at the right angle, sucha  Fig. &.
lever is called a rectangular lever. The

weight W is suspended from the short arm

FC, and the power P from the longer arm

AF; the moment of the power in this ¢

case is P multiplied by AF, and that of F
the weight # multiplied by FC: if these "
moments are equal, equilibrium will be the result. If
instead of the power acting at a right angle to the ful-
crum, we suppose it to act obliquely, as in the annexed
figure (85), the method of calculating the Fig. 8.
power of this lever is the same as in fig.
83. In this case we draw a line from
the fulerum F perpendicular to the line
of direction of the power AP, and this
line will therefore represent the true arm
of power of the lever : thus, suppose W
to be 5 pounds, acting at the distance of 1 foot from the
fulcrum, it follows that if the line F'G be 5 feet, and
the power P 1 pound, the power and weight will just
balance each other.

A pump-handle is a familiar instance of the bent lever,
in which the force of the man pumping applied at the
extremity of the handle is the power; the water to be
raised, together with the friction of the piston, is the re-
gistance to be overcome ; and the fulcrum is at the joint
of the pump-handle.

‘When the hammer is used for drawing a nail, it is a
lever of this kind ; the fulecrum of which is the point C,
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fig. 86, on which the hammer presses; Fig. 86.
the power is applied upon the handle A
of the hammer at 4, and the resistance

of the nail is the weight.

The instrument represented in the \\"
annexed figure (87) is called the bent
lever balance. L is the arm of a bent
lever, from which is suspended a dish
F'to receive any substance to be weighed ;
at the extremity of the other arm CD
a heavy knob is attached, which is move-
able upon a graduated arch GH. When
a weight is placed in the dish F, it is
evident it will cause the knob D to
move up the arch; and when D has arrived at such a
position that it balances the weight, the division to
which the index points on the graduated arch expresses
the amount of the weight. The positions corresponding
to different weights may be determined by experiment
or calculation; and these being marked upon the arch,
the index at D will always point to that division on the
arch which represents the weight in the dish F.

It will be readily seen from the foregoing examples
that whatever be the figure or shape of the lever, and
whafever the degree of obliquity of the force applied,
the power of the machine may be ascertained by draw-
ing ideal lines at right angles from the lines of the forces
to the fulcrum, and calculating accordingly.

Having explained the various kinds of levers, we will
consider, before concluding this chapter, the effect a
weight has upon a beam supported upon #wo fulcrums.
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‘When a beam rests on two fulcrums, Fig. 8.

A, B, fig. 88, and a weight w is sup-

ported at some intermediate place C; ‘Tﬁ
this welght is distributed between the o

props in a manner which may be calculated on the prin-
ciples already explained. If the pressure on the fulcrum
B be considered as a power sustaining the weight t, by
means of the lever of the second kind BA, then the
power multiplied by the length of the lever BA will be
equal to the weight multiplied by the shorter arm CA.
If AC be one-third, and BC two-thirds of the lever B4,
the pressure on B will be one-third of the weight, and
the pressure on A4 two-thirds of the weight. It is clear
from this example, that if the weight be suspended at
an equal distance from B and 4, each fulerum will sus-
tain half the weight.
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CHAPTER VIII.
THE WHEEL AND AXLE.

Ir has already been shewn that the lever in com-
municating motion acts by a succession of short and
intermitting efforts. In fig. 58, when the weight has
been raised from B to C, in order to repeat the action,
the lever must again return to its first position. During
-this return, the weight must be supported by some
other means. The common lever is therefore only used
when a great weight, acting through a small space, is
required to be moved by a comparatively small power,
and under these circumstances it is well adapted to
produce the effect.

The wheel and axle is a contrivance for extending the
action of the lever to any distance, and rendering it con-
tinuous: it consists of a wheel with an axle fixed to it,
8o as to turn round with it ; the power being applied at
the circumference of the wheel, and the weight to be
raised is fastened to a rope which coils round the axle.
The manner of using this machine is as follows :—The
two ends of the axle are supported in an horizontal
position, so that the whole machine may freely revolve
about the common axis of the wheel and axle: the
wheel, by some outward force applied to it, is made to
turn round, which causes the axle to turn round with
it; this is usually accomplished by means of a rope
going round the wheel, and fastened to some place in
its circumference. Another rope is also fastened about
the axle so as to wind itself round it, while it revolves
by means of the force applied to the wheel. The weight

H
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is fastened to the end of the rope which hangs down ;
and as the force acting upon the wheel causes both the
wheel and axle to turn round, the rope attached to the
axle must necessarily pull up the weight. From this
description of the machine, it will be seen that there are
two contrary forces acting in opposition to each other;
one being the weight tending to make the machine re-
volve in one way, and the other is the power tending to
make it revolve in the opposite direction. These forces
act at different distances from the axis; the weight at a
distance equal to the radius of the axle, and the power
at a distance equal to the radius of the wheel. The
annexed figure (89) represents a wheel, Fig. 9.

and an axle fixed to it, and which
moves round with it. If the rope
which goes round the wheel is pulled,
and the wheel turned once round, it
is clear that as much rope will be
drawn off as the circumference of the
wheel : but while the wheel turns once round, the axle
also turns once round; and consequently the rope by
which the weight is suspended will wind once round
the axle, and the weight will be raised through a space
equal to the circumference of the axle. The velocity of
the power, therefore, will be to that of the weight, as
the circumference of the wheel to that of the axle. If
the power bears the same proportion to the weight
as the wheel does to the axle, the machine will be in
equilibrium ; it appears, therefore, that the power of
the machine is expressed by the proportion which the
diameter of the wheel bears to the diameter of the axle.
Thus, suppose the diameter of the wheel to be 12 inches,
and the diameter of the axle to be 1 inch, then 1 ounce
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acting on the wheel will balance 12 ounces acting on the
axle; and a small additional force will cause the wheel
to turn with its axle and raise the weight. The wheel
and axle may be considered as a kind of perpetual lever.
Fig. 90 represents a section of the machine,  rig. go.

and shews how the lever operates. The

line going across the machine from 4 to B
represents the lever, whose centre of motion

is ¢: the weight W, sustained by the rope

AW, is applied at the distance cA, the

radius of the axle; and the power P, sus- P
tained by the rope BP, is applied at the distance ¢ B,
the radius of the wheel ; the long arm of the lever being
half the diameter of the wheel, and the short arm half
the diameter of the axle: therefore, according to the
principle of the lever, we must multiply the weight by
its distance from the fulcrum (half the diameter of the
axle), then multiply the power by its distance from the
same point (half the diameter of the wheel), and if the
products be equal, the power will balance the weight.
From this it is evident, that the larger the wheel, and
the smaller the axle, the stronger is the power of this
machine ; but the weight must rise slower in proportion.
From what has been said, it appears that the meckanical
¢fficacy of the wheel and axle may be increased in two
ways ; either by diminishing the radius of the axle, or
by increasing that of the wheel. 'When, however, this
theory is applied to practice, it will be found that, if the
weight exceed the power very much, either the axle
must be made so slender as not to be able to support
the weight, or the radius of the wheel must be so large
as to render the machine unwieldy, owing to the power
working through an inconveniently grest space. The

H2
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combination of the requisite strength with convenient
dimensions and great mechanical power, is accomplished
by giving different thicknesses to different parts of the
axle. This contrivance is represented in g, g,
fig. 91. AB is the axle consisting of two
parts, the diameter of one part being less
than that of the other. A rope coiled on
the thinner part and passing through a
wheel, to which is attached a weight, coils
in the opposite direction on the thicker
part. When the axle is turned in such
a direction as to cause the rope to coil
round the thicker part, it will necessarily
be uncoiled from the thinner part, and
upon every revolution of the wheel a portion of the
rope, equal to the circumference of the thicker part, will
be drawn up, and, at the same time, a portion equal to
the circumference of the thinner part will be let down.
The result, therefore, of one revolution of the machine
will be to shorten that part of the rope where the weight
is suspended just as much as the difference between the
circumference of the two parts, that is, between the
thicker and thinner parts of the axle.
The annexed figure (92) represents a Fig. 52.
section of this machine. It is obvious
that the two parts of the rope 4 and B F
equally support the weight D, each part
being stretched by a force equal to half
the weight ; and as the machine turns,
the rope passes from the small part of
the axle to the large part, the power
being applied to a rope coiled round the
lIargest circle. As the forces at K and F
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act on the same side of the centre, it is clear that they
will both tend to support the force acting at G'; and as
the pressure of the weight D is equally sustained by
the two parts of the rope 4 and B, the force acting at
E is equal to that at G, and would sustain it without
the assistance of P, if the distance CE, at which it acts,
were equal to CG. On the principle of the lever, the
moments of P and £ must be equal to that of G;
therefore, if P be multiplied by the radius of the wheel,
and added to half the weight multiplied by the radius
of the thinner part of the axle, we obtain a product
equal to half the weight multiplied by the radius of
the thicker part of the axle. Hence we perceive, that
the power multiplied by the radius of the wheel (which
is the lever by which it works) is equal to half the
weight multiplied by the difference of the radii of the
thicker and thinner parts of the axle. '

As G4 is at a greater distance from the centre than
EB, it will preponderate unless a force at F counter-
act it: and the more nearly the distance from C to G
and C to E are equal, the less force at F will be re-
quired to support the weight. If this system be con-
sidered as a lever, the moment on the side CG is equal
to the product of half the weight multiplied by CG, and
the moment on the side CE is equal to the product of
half the weight multiplied by CZ, and this moment is
opposed to that on the side CG. As the moment on
the side CG is greater than that on the side CE, the
difference must be counteracted by some power P ap-
plied at . Suppose CG to be 4 inches, CE 3 inches,
and CF 10 inches, the weight of D to be 400 pounds,
and therefore the weight on each string 200 pounds.
On the principle of the lever, the moment of G on o
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side CG is equal to 200 pounds (half the weight of D)
multiplied by 4 (its distance from C) or 800, and the
moment of £ on the side CF is equal to 200 x 3, or
600 ; therefore the difference of these moments, to be
counteracted by the power at F, is 200. To find the
amount of weight necessary to be applied at F, we
must divide the 200 pounds to be supported, by the
distance CF, which we have supposed to be 10 inches:
we therefore obtain a product of 20 (200 divided by
10); 20 pounds at P will thus balance 400 pounds at
D by the aid of this machine.

It often happens that the action of the power is liable
to occasional suspension, in which case the weight would
rapidly descend, and thus lose the advantage gained by
raising it: in order to prevent this, a contrivance called
a ratchet-wheel is affixed to the axle (see fig. 91). This
wheel consists of teeth, all of which are curved in one
direction. A bolt or catch working on a pivot falls
between the teeth of the wheel. When the axle is
turned round, the ratchet-wheel turns round with it,
and the catch which falls between the teeth prevents it
receding when the action of the power happens to be
suspended. By this contrivance the power may be
withheld at pleasure, while the effects of its past action
may be retained.

From the above explanation of the wheel and axle, it
will be readily seen that the law of virtual velocities
already explained equally applies to this machine as to
the lever; therefore, ““If two forces balance each other
on the wheel and axle, and the whole be set in motion,
the product of the forces multiplied by the spaces
through which they respectively move is the same.”

Suppose a small weight, fig. 80, suspended to the
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circumference of the wheel, supports a larger weight
suspended to the circumference of the axle, then the
small weight will be in the same proportion to the
large weight as the radius or circumference of the axle
is to the radius or circumference of the wheel: if the
wheel and axle be turned once round, the small weight
will descend through a space equal to the circumference
of the wheel, and the greater weight will be raised
through a space equal to the circumference of the axle;
and as these spaces are proportional to the two weights,
the product of the smaller multiplied by the space
through which it moves, (that is, the circumference of
the wheel,) is equal to the product of the larger multi-
plied by the space through which it moves (that is, the
circumference of the axle).

The same principle applies where one part of the axle
is thicker than the other, fig. 91. If the wheel be
turned once round, the thicker part of the axle 4, and
the thinner part B, will each revolve also; and while
one part of the rope is coiled round the thicker end of
the axle, the other part of the rope is uncoiled from the
thinner ; and one end of the rope will therefore be short-
ened by a quantity equal to the circumference of the
thick part of the axle, and the other end will be length-
ened by a quantity equal to the circumference of the
thinner part of the axle; and the whole rope will be
shortened equal to the difference of the circumferences
of the two axles; the weight will therefore be raised
through a space equal to kalf that difference. Hence
we conclude, that the space through which the power
is moved is to the space through which the weight is
moved as the radius of the wheel to half the difference
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of the radii of the two axles, or as twice the radius of
the wheel is to the difference of the radii of the two
axles; therefore the power and weight will balance each
other when the power multiplied by the space through
which it moves is equal to the weight multiplied by the
space through which it moves.

There are various ways in which the power is applied

to the wheel. Sometimes, instead of being applied to
the axle by means of the wheel, an iron handle is fixed
which acts as a lever, and by its circular motion answers
the purpose of a wheel, as in fig. 93. Fig. 83,
By this machine water is raised from a =§
well in a bucket. It often happens that
the well is so deep as to cause the rope
to coil more than once the length of the
axle: in this case it will be found that,
as the bucket ascends nearer the top, the difficulty of
turning the handle will be increased; for, as the ad-
vantage gained is in proportion as the circumference of
the wheel is greater than that of the axle, it is evident
that when the rope coils round the wheel the second
time, the difference between the circumference of the
wheel and that of the axle will continually diminish ;
so that the advantage gained is less every time a new
coil of rope is wound on the whole length of the axle,

Sometimes pegs are placed round the circumference
of the wheel at equal distances, to which the hand may
be applied as the power (see fig. 89), This manner of
applying the power is exemplified in the whee] used to
work the rudder of a ship. In the windlass the axle
is horizontal ; but in the capstan it is vertical. The
advantage of its vertical position in the capstan (fig. 94)
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is very evident. A series of long levers are fixed at
equal distances round the axle; to each of these the
force of one or more workmen may
be applied at the same time by their
walking round the axle and pushing
the levers before them: then, as
these bars are pushed round, the
upright " axle will evidently turn
round with them, and thus the rope
is wound round the axle, and the weight is drawn
towards it.

The capstan is principally used for raising the anchors
of ships : when not in use, the spokes are taken out and
laid aside.

In calculating the power of this machine, the propor-
tions are the same as in the wheel and axle ; that as the
radius of the wheel (which is in this case half the thick-
ness of the axle added to the length of the bar) is to
the radius of the axle, so is a weight supported by a
man applying his strength to the end of one of the bars
to the quantity of power by which he supports it.

Suppose a heavy stone weighing 20,000 pounds is
required to be raised, and suppose 10 capstans to be
placed round it, each capstan having 10 bars, to each
of which bars a man applies his strength. Let the
radius of the axle be 6 inches, and let each bar be 53
feet in length, and suppose the force of each man equi-
valent to 200 pounds. If the length of each bar, which
is 54 feet, be added to the radius of the axle, which is
6 inches, the product will be 6 feet, which in this case
is the radius of the wheel. Then as 6 inches (the radius
of the axle) is to 72 inches (the radius of the wheel),—
that is, as 1 to 12,—s0 is the quantity of each men'e
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force to the weight he is able to support by one bar of
this machine ; therefore, as 1 to 12, so is 200 pounds to
the weight each man sustains,—that is, 2,400 pounds.
Now this multiplied by 100 (there being 10 capstans,
each consisting of 10 bars), produces 240,000 pounds,
which is more than the weight of the stone to be raised.
It was chiefly by the help of a series of capstans that
Domenico Fontana, an Italian architect, removed the
great obelisk in the centre of the portico before St
Peter's Church at Rome, the weight of which was
nearly a million pounds.

‘We have already explained, that, if in the wheel and
axle the weight exceed the power very much, either the
axle will be liable to break, or the wheel will be of an
unwieldy size; when therefore great power is required,
wheels and axles may be combined in a similar manner
to a compound system of levers, and the conditions of
equilibrium are exactly the same in both.

In compound wheel work, the power is applied to
the circumference of the first wheel, which transmits
its effect to the circumference of the first axle. The
axle being made of sufficient strength and thickness to
support the weight, the wheel belonging to it is made
of such a radius as is found most Fig. 95,
convenient, and the circumference
of the wheel is cut into teeth as
in the annexed figure (95). This
wheel is made to play upon a
small wheel which is called the
pinion ; this pinion is also fast-
ened to another axle, and so placed
that the teeth of the wheel and

pinion may take hold of each other
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ag they both turn round. At the end of this second
axle is fastened another large wheel, the circumference
of which is likewise divided into teeth ; and under it is
placed a second pinion fastened to another axle. At
the other end is fastened another large wheel, to which
the force that turns the whole machine is to be ap-
plied. All these wheels are represented in the adjoining
figure. In this combination of the wheel and pinion,
a long perpetual lever works against a short perpetual
lever, by which a considerable mechanical advantage
is gained. By this combination the same effect is pro-
duced as if the radius of the first wheel had been
increased ; but it is obvious it is done with much more
ease and convenience: the power of the wheel and axle
under these circumstances may be found by multiplying
together the powers of the several wheels of which it is
-composed. This power is generally computed by num-
bers expressing the proportions of the circumferences or
diameters of the several wheels, to the circumferences or
diameters of the several axles respectively. Suppose it
were required with a power equal to 40 pounds to sus-
tain a weight of 4,320 pounds, which is to the power
as 108 to 1. Suppose also, that the diameter of the
axle is 8 inches, and just able to support such a weight
without breaking. Now if we make use of the simple
machine to sustain this given weight, we shall find that
it will require to an axle of 8 inches diameter a wheel of
72 feet, 864 inches in diameter, to sustain the weight *.

* If the weight, which is equivalent to 108, be multiplied by the
diameter of the axle, which is 8, the product is 864 ; in order there-
fore to balance this, the diameter of the wheel must be 864 inches,
as 864 x by the power 1 =864,
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But such a machine would obviously be unwieldy and in-
convenient, therefore the compound wheel must be used.

We have already shewn that if a power be equal to 1
and its velocity 20, and a weight be equal to 20 and its
velocity 1, the power and weight will support each other.
If therefore the power, by the help of this compound
wheel, be so increased as when multiplied into its
quantity, it is equal to the velocity of the weight also
multiplied into its quantity, the power applied to this
machine will sustain the weight. In the same figure
let the uppermost wheel be A4, the pinion under it B,
the second wheel C, the second pinion D, and the third
wheel E. Let the wheel 4 be 12 inches radius (that is,
24 inches in diameter), and the radius of the axle 4 inches;
if the power be applied at the circumference of the wheel
A, its velocity will be to that of the weight as the radius
of the wheel to the radius of the axle,—that is, 12 to 4,
or3tol. Let us now suppose the radius of the pinion
B to be 2 inches, and the number of its teeth 12, and
the number of teeth in the wheel 4 to be 72; their pro-
portion will therefore be as 1 to 6. Let the wheel O be
equal in radius and in number of teeth to the wheel 4.
The weight being supposed to act upon the axle of the
wheel 4, makes the circumference of that wheel revolve
with a velocity that is to its own as 3 to 1 (the radius
of the wheel being 12 inches, and the radius of the axle
4). As its teeth go round, they catch successively upon
those of the pinion B, and make that pinion go round
with a velocity equal to their own,—that is, 3 times
faster than the weight. The pinion B in turning round
makes its axle and the wheel C to turn round with it;
~ and as the radius of the wheel C is to that of the pinion
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B as 6 to 1, the velocity of its circumference, and there-
fore of the power supposed to be applied there, will be
to that of the pinion B as 6 to 1 also. But the pinion
B goes round 3 times faster than the weight ; therefore
the velocity of the power at the wheel C being 6 times
greater than that, must be 18 times greater than that
of the weight. Let us now suppose the power applied
to the circumference of the wheel %, and let the pinion
D be equal in radius and in number of teeth to the
pinion B, and let the radius of the wheel E be equal to
that of the wheels C and 4 ; as the teeth of the wheel
C, taking hold on those of the pinion D, causes that
pinion to turn round with a velocity equal to its own,
this pinion makes the wheel £ turn round also with a
velocity that is at the circumference as the radius of the
wheel to the radius of the pinion,—that is, as 6 to 1.
‘We have already shewn that the velocity of the pinion
D is 18 times greater than that of the weight, and as
the velocity of the power at the circumference of the
wheel £ is 6 times greater than that, it will therefore
be to that of the weight as 6 multiplied by 18 is to 1,—
that is, 108 to 1. Hence it follows that the power
whose quantity is as 1, has a velocity of 108; and the
weight whose quantity is as 108 has a velocity of 1;
from which we conclude that the moments of the power
and the weight are equal, and will therefore mutually
support each other.

‘When one wheel acts upon another by means of teefh,
in order that the motion may be communicated from
wheel to wheel with uniformity, the teeth must be so
cut that they may turn smoothly upon one another;
it is necessary that great attention be paid to the exact
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adjustment of the teeth, or they will be apt to jar upon
and break each other.

In the wheel and pinion it is evident that each pinion
revolves much more frequently than the wheel which it
drives; and the number of revolutions which a pinion
connected with a wheel will make for one revolution of
the wheel, may be known by the number of teeth in
each. Thus, if the wheel contains 100 teeth, and the
pinion only 10 teeth, the pinion will revolve 10 times
to 1 revolution of the wheel. Therefore the respective
revolutions of every wheel and pinion working together
will have the same proportion as their number of teeth
taken in a reverse order.

Sometimes motion is transmitted from one wheel to
another by means of straps or cords; one great advan-
tage attending this is that the wheels may be placed at
any distance from each other, and be made to turn
either in the same or contrary directions: when however
the belt is very long which connects the two wheels, it
is apt to vibrate in its motion, from its weight being
unsupported at the centre. The an- Fig, 96.
nexed figure (96) represents the trans- —
mission of power by a belt from one ®
wheel to another, both being of the =
same diameter. The power which is given to one wheel
is transmitted to the other; and as they are both of the
same diameter, their velocities will be the same, and
both will turn round in the same direction.

If the diameter of one wheel be greater than that
of the other, the smaller wheel would turmn round
more frequently than the large one. For instance, if
the diameter of the large wheel were 9 inches, and
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the diameter of the small wheel 3 inches, the latter
would turn round three times for one revolution of the
former.

The annexed figure (97) represents Fig. 97.

two wheels moving in different direc-
tions, which arises from the belt being
crossed upon leaving the large wheel:

besides the advantage of changing the rotatory motion of
wheels which the crossing of the belt produces, it has
also the advantage of causing the belt to move more
steadily. '

In watch and clock work the wheels are used to pro-
duce and regulate motion merely, without any reference
to weights to be raised, or resistance to be overcome ;
the force which is applied varying in its intensity, while
the wheels are required to be kept at a uniform speed.
Suppose that the power is a spiral spring of tempered
steel (fig. 98), the force of which Fig. 98.
lessens as it relaxes, it is evident that

its force is greatest when it begins
to relax; the following illustration,
which represents the apparatus of

the watch, will exemplify how this defect is compen-
sated. The spiral spring is coiled up and put into a
brass box called the barrel
B (fig. 99). The spring
is fastened to the barrel
by an oblong slit at its p
outer extremity ; a central
axis orspindle goesthrough
the brass box, to which the other end of the spring is
attached. A chain is coiled round the barrel B, one

Fig. 99.
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end of which is fixed on the barrel, and the other is
attached to a brass cone F, which is broad at the bot-
tom and narrow at the top, which has also an axle on
which it is capable of turning. This cone is called a
fusee. When the chain is rolled upon the spiral thread
of the fusee, the spring within the barrel B is relaxed.
When, by means of a watch-key, the spindle is made
to turn, the chain is drawn from the barrel and wound
round the fusee; the chain in rolling off the barrel causes
it to revolve, and consequently to wind up the spring
inside. When the force of the spring is greatest, the
chain turns round the smallest part of the fusee, and
may then be considered as acting with a small lever:
as the spring gradually relaxes, the chain is drawn off
the fusee and on to the barrel, it then gains a greater
lever advantage, as the part on which it acts is nearer
to the base of the come. Thus the gradual loss of
force is counterbalanced by a gradual increase of lever
advantage; so that, these two opposite effects pro-
ducing & mutual compensation, an uniform action is
the result®.

In water-wheels the water is ap-
plied by causing it to fall or flow into
buckets at the circumference of the
wheel, as in fig. 100; in this case f\
the apparatus is called an overskot
wheel: the water is made to approach

* The wheel-works of the watch are of too complicated a nature
to admit of a detailed explanation in this little volume. We have
endeavoured above to explain the action of the fusee, as this part
of the apparatus is more immediately connected with our present
subject.
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by a channel on a level with the top
of the wheel, and falling into the
buckets turns the wheel by its own
weight. Sometimes the impulse of
the water acts against flat boards at
the circumference, as in fig. 101 ; it
is then called an undershot wheel.

" Both these principles act in the Flg. 103.
breast wheel, fig. 102, which is used
when the water cannot be made to ap-
proach the wheel higher than a point
opposite the middle of the wheel.

The water which is brought by an
artificial channel flows into the buckets fixed at the cir-
cumference of the wheel. The wheel is turned round
by the weight of the water in the buckets; and when
these arrive at the bottom in revolving, the water flows
from them, and they ascend empty on the other side to
be again filled.

‘Windmills are used only in cases where regularity and
constancy of motion are not requisite. The power in this
case is the force of the wind acting on various parts of
the arms, and may be considered as different powers
acting on different wheels having the same axle.

Numerous methods have been contrived in order to
combine the weight and muscular power of cattle in
giving motion to wheels. One instance is that of a
horse placed at the circumference of the wheel, and
moving forwards on the side of the wheel on which he
steps, and as the wheel descends the horse maintains his
position continually.

One of the most common practical applications of the

1
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wheel and axle is the crane used on wharfs and in ware-
houses for raising and lowering heavy parcels of goods.
Formerly it was a very common practice to work such
cranes by a man walking in the inside of the large wheel,
which was thus put into motion in the same way that
circular cages are moved by an inclosed squirrel, or that
the turnspit dog was formerly employed for roasting
meat. This was, however, not only a dangerous but a
very disadvantageous mode of employing strength, and
is now almost entirely abandoned. The best and most
efficacious method of employing human power to a ver-
tical wheel and axle is to cover the exterior circumference
of the large wheel with float or projecting boards like a
common water-wheel, and to permit a man or men to
tread upon the boards as in walking, at the height of a
line which forms the horizontal diameter of the wheel,
for then the man's whole weight and power will be
thrown into action at the point where it will have the
greatest effect. This same application of power has
been resorted to as a means of employing the criminal
prisoners in most of the gaols of Great Britain under
the name of the treadmill.

The wheel and axle is Sometimes used to multiply
motion instead of to gain power, as in the multiplying
wheel of the common roasting-jack, to which it is ap-
plied when the weight cannot conveniently have a long
line of descent : a heavy weight is in this case made to
act upon the axle; while the wheel by its greatest cir-
cumference winds up a much larger quantity of line than
the single descent of the weight would require, and thus
the machine is made to go much longer without winding
than it otherwise would do.
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Among all the simple machines, there is none so ge-
nerally useful, and therefore so frequently making a part
of compound machinery, as the wheel and axle: its ad-
vantages are partly owing to its motion being revolving,
which is capable of being uninterruptedly continued
through a period of indefinite extent; and to this ad-
vantage may be added the extreme facility with which
wheels may be connected in various modes with other
kinds of machinery. Hence there are few complex
machines of which wheels do not constitute the most
effective or essential parts. Thus are formed a vast
variety of mills, from the coffee-mill to the powerful and
complicated engine called a rolling-mill for compressing
plates of iron and cutting them into rods or bars; all
the numerous kinds of wheel carriages, turning lathes,
and grinding machines; clocks, watches, and timekeepers
in general ; spinning jennies, and many other machines
used in the cotton, linen, woollen, and silk manufac-
tures ; and steam-engines, under many of their modi-
fications, to accommodate them to the purposes to which
they are devoted.

12
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CHAPTER IX.
THE PULLEY OR CORD.

TaE machines we have hitherto considered have been
supposed to be constructed of inflezible materials ; but
the mechanical efficacy of the machine we are now about
to explain depends upon the flezibility of the material.
A cord may be used to transmit a force from one di-
rection to another, and this is one of the greatest con-
veniences attending this machine: thus, suppose it be
required to support a weight C, fig. 103, by Fig 10
means of a power in the directiona ; this may
be accomplished by attaching one end of a rope
to the weight, and passing it over the edge a,
the power being applied by the hand. If the
edge or prop over which the cord acts be a pro-
jecting piece of wood or iron, the exertion of ¢
the power would evidently produce considerable friction
on the rope and cause it to wear away very quickly:
to obviate this defect the pulley was invented, which
consists of a round block of wood having a groove cut in
its edge of sufficient breadth and depth to admit a rope ;
this block is made moveable about its centre by means
of a pin passing thyough it, which is supported in a
frame called a sheaf. The pulley being capable of re-
volving round the pin, will obviously remove in a great
degree the effects of the friction of the rope: it is ne-
cessary to observe that although the name pulley has
been given to the block and sheaf, the mechanical effi-
cacy of this machine does not depend upon these, but
upon the cord, as we have already explained, the block
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and sheaf being only introduced to obviate friction.
Pulleys are of two kinds:—1. Fixed, which do not
move out of their position. 2. Moveable, which rise
and fall with the weight. :

THE FIXED PULLEY.

When a pulley is fixed, as in fig. 104, two Fis- 104.
equal weights suspended to each end of a rope —7—
passing over it will balance each other, for if
either of them be pulled down through any
given space, the other will rise through an
equal space in the same time, and the cord will
be stretched uniformly throughout its length ;
and consequently as the velocities of both are equal,
they must balance each other. Hence it appears that
the fixed pulley gains no mechanical advantage: it is
nevertheless attended with the great convenience of
enabling the direction of the power to be varied; for
by it a man may raise a weight to any point without
moving from the place he is in, whereas otherwise he
would have been obliged to ascend with the weight:
it also enables several men together to apply their
strength to the weight by means of the rope. Some-
times it becomes necessary to use two fixed pulleys, the,
power being applied by means of horse power, and
often by the capstan. Thus, suppose Fig. 105.
it be required to raise a heavy
weight a, fig. 105; two fixed pulleys
B and C may be used, one end of the
rope being attached to the weight;
it is then carried over the pulley
B, and returning downwards is
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brought under C, and this end is fixed to the capstan,
where the power is-applied. By means of the fixed
pulley a man may raise himself upwards or descend
to any given depth ; if he be seated in a chair or bucket,
as represented in fig. 106, attached to one end Fig. 106.
of a cord, which is carried over a fixed pulley

above, by pulling downwards the other side of

the cord he may raise himself to a height equal

to half its entire length; he may likewise

descend to a depth equal to half the length of

the cord: on this principle fire-escapes have

been constructed, the pulley being hooked to some part
of the building.

Moveable Pulleys.

A single moveable pullsy is represented
in the annexed figure (107), and it differs
from the fized pulley by its hanging in
the cord which passes under it, and from
which the weight is suspended. A cord
is carried from a fixed point a, and pass-
ing through the moveable pulley B at-
tached to a weight w, passes over a fixed pulley C, a.nd
the power is applied at P. As the power P is pulle&
downwards, the length of the parts of the rope a B and
BC will evidently be shortened, consequently the lower
pulley must rise, the distance between it and the beam
at the top becoming as much less as those two parts of
the rope are made shorter; and as the weight w is sus-
tained by the parts of the cords a B and BC, and these

parts are equally stretched, each must sustain half the
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weight : if therefore the power be equal to only half
the weight, it will support it by the help of this
machine.

Let us now suppose that instead of the i 106
rope being fastened to a fixed point a, as ¥
in fig. 107, it be lengthened, and allowed
to pass over a second fixed pulley, as in
fig. 108, and hang down to F, so that a
new force, equal to half the weight, on
being applied at F, pulls the rope a F
downwards; this new force will be equal to that by
which the fixed point a, fig. 107, sustains its share of
the weight: as by the law of action and reaction it will
be equal to the force with which the weight acts upon
it, and as the weight acts upon it with half its force,
the force of the point @ in sustaining the weight is equal
to half the weight. But the new force at F acting
over the fixed pulley ¢ being equal to half the weight,
it will consequently be equal to the force of the point a.
Hence we conclude that, supposing this new pulley to
be removed, the cords a. B and BC are equally stretched
by the actions of the weight and power and fixed point
upon them ; for the weight stretches each of them with
a force equal to half its weight, and the power and fixed
point on their side also stretch them equally with forces
equal to half the weight : therefore, being stretched by
equal forces, they must be equally stretched. The Zalo-
ing of the weight is therefore the mechanical advantage
obtained by the moveable pulley; for example, if the
weight w0 be 12 pounds, 6 pounds will be sustained
at the fixed point a, fig. 107, and 6 pounds by the
power P.
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If, instead of the cords a.B and BC Fig. 109,
hanging in a vertical direction, they ———7
hang obliquely, as in the annexed @
figure (109), a greater power than P
half the weight will be necessary to
sustain it. In this case, to ascertain
the amount of power required to support a given weight,
we apply the principle of the composition and resolution
of forces, as already explained at page 12: we must
therefore draw a vertical line from B, consisting of gs
many inches as the weight consists of ounces. Suppoee
this line to extend to F, then from F draw F.D parallel
to aB, and FE parallel to CB; the amount of the
weight represented by FB will be equivalent to two
forces represented by DB, BE. The number of inches
in BD will represent the number of ounces which are
equivalent to the temsion of the part BC of the cord,
and in like manner the number of inches in BE will
represent the number of ounces equivalent to the tension
of the part of the cord Ba; and as the cord is equally
stretched by the weight w, BD and BE must be equal,
and the power P, which stretches the cord at PC, will
be equal to each of them.

The mechanical power of pulleys may be almost in-
definitely increased by combination. There are two
different kinds of combinations or systems of pnlleys;
one consisting only of a single rope, and the other of
several distinct ropes. The annexed Fig. 110.
figure (110) represents a single cord ; 3
passing over several fixed pulleys. r
Suppose there be three pulleys fixed
to the upper beam a, and three to the us




SYSTEM OF PULLEYS WITH A SINGLE ROPE. 121

lower beam B ; let one end of a cord be fixed at C, and
passing under the pulleys in the lower beam B, and
over the pulleys in the upper beam a; let a power P
be attached to the other end of the cord; then if a
weight « be attached to the lower beam, and all the
cords are parallel, every part of the cord sustains a
pressure equal to the power P. In this case, as there
are three pulleys attached to the lower beam from which
the weight is suspended, the weight may be considered
as divided into three equal parts, each pulley bearing a
third of the weight; but since there are two cords to
each lower pulley, the action of eack of these three parts
may be considered as again divided into two other equal
parts,—therefore every cord will sustain one-sixth part
of the weight, or 1 pound at P will balance 6 pounds
at .

In fig. 111 the number of cords sustaining Fe ML
the weight is four, and therefore the weight
may be four times as great as the power; it
is evident that each cord, as in the preceding
illustration, sustains an equal part of the
weight. The weight may therefore be con-
sidered as divided into four parts, each part
being sustained by one cord. In calculating
the expenditure of power, or diminution of
weight in this machine, we have only to mul-
tiply the number of moveable pulleys by two, and the
product will be the required power. Two moveable
pulleys multiplied by two cords give a product of four;
therefore the power to be exerted will be a fourth of the
weight, and so on.
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Fig. 112 is another representation of a
system of pulleys having a single rope.
The weight is attached to the lower block
which is moveable and contains three
wheels B, D, and F.  The upper block is
fixed and contains three wheels 4, C, and
E, and the rope attached to the hook G is

- successively passed over the wheels above
and below, and after passing over the last
wheel above, is attached to the power.
The weight is sustained by all those parts
of the cord which pass from the lower
block ; and as the force which stretches them all is the
same, viz. that of the power, the effect of the weight
must be equally distributed among them. It must
therefore be evident that the weight will be as many
times greater than the power as the number of cords
which support the lower block. Thus, if there be six
cords, as in the last example, each cord will support a
sixth part of the weight.

The same principle equally applies to the an- Fig- 113
nexed figures, 113 and 114, which are repre-
sentations of a system of pulleys chiefly used
on board of ships for raising and lowering sails )
and masts. This system is much more con- l
venient for practical purposes than that repre-
sented in the preceding illustration, in which
case the length of the two blocks renders it
impossible to raise the weight to within a con-
siderable distance of the point to which the
system is suspended. In the accompanying diagram
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the pulleys are placed side by side, in-
stead of being arranged beneath ome an-
other, as in figs. 111 and 112. In the
adjoining illustration (fig. 114) three
moveable pulleys are inclosed in the
block B, and three fixed pulleys are
inclosed in the block 4. If the weight
be 1,200 pounds, it may be considered
as in the former instances to be distri-
buted over the six cords, and thus re-
quiring only a power of 200 pounds to
support it. This system of pulleys is,
however, attended with the inconvenience "
of the ropes acting obliquely on the pulleys, which tends
to increase their friction and to wear their axes; and
in all cases where the power is applied obliquely, as
was shewn in fig. 109, there will be a loss of power
in proportion as the line of tension departs from the
vertical. In calculating the power of systems of pul-
leys of this class, the weight of the lower block must
always be considered as a part of the weight to be
raised.

A system of pulleys has been contrived by the cele-
brated Smeaton, in which there are ten wheels in each
block, arranged in two rows beneath one another. A
single cord is made to pass over the pulleys in the order
in which they are marked by the figures 1, 2, 3, &ec.
fig. 115. The tension of the cords being the same
throughout, each cord acts upon the weight with a
force equal to the power. Thus, a power of 20 will
sustain a weight of 400, there being 10 pulleys in the
lower block, and two cords to each pulley, 10 x 2=20,-
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which being multiplied again by the power 20, produces
400.

In the system of pulleys already described, every
pulley has a separate axle; and eack pulley turning on
its axle, must consequently be attended with friction.

Fig. 115. Fig. 116.

To obviate this defect, an ingenious contrivance has
been suggested by White, by which all the pulleys on
each block turn upon the same axis. Fig. 116 is a re-
presentation of White’s pulley, in which there are two
circular blocks consisting of pulleys placed upon one
snother, and revolving upon a common axis. The same
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cord -is passed round each pulley in succession, com-
mencing with the largest of the higher block, and termi-
nating at the centre of the lower block, where it is
fastened. For a fuller explanation of this pulley, as
well as its mechanical efficacy, the reader is referred to
the “ Treatise on Mechanics,” p. 35, in the Library of
Useful Knowledge. *

A single rope may be so arranged- by means of one
moveable pulley as to support a weight equal to three
times the power. The annexed figure (117) Fig. 117
represents this arrangement, where the power
P of one pound supports the weight W of 3
pounds by means of the three parts of the cord
a, b, and ¢. For each of the strings a, b, and ¢,
supports the same tension, namely, a force equal
to the weight of P; and the tension of them all
is counteracted by the weight of #. -

A weight may be made to support another weight
four or five times as great as itself by means of two cords
and two moveable pulleys, called Spanisk Bartons, as
represented in fig. 118. The two moveable pulleys have
their sheafs attached by the same cord, aBc, passing
over the fixed pulley B. The power Pis  Fig 18.
made to act upon a second cord, passing BT D
over the first pulley under the third, and
fixed to the beam D, In this case, each
of the cords Pa, ac, and ¢ D, supports a
pressure equal to the power of P ; and each
of the strings a B, Be, supports a pressure w
equal to twice the power P; and as the weight W
counteracts the pressure upon the three cords De, ¢ B,
ca, it must therefore be four times as great as P.

a

P
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A number of moveable pulleys may be combined so
as to increase the power of the system to any extent.
In fig. 119, a system of pulleys is represented  rig. 119,
with three ropes, in which the weight is 8
times the power. At the extremity of the
first rope, a power of 4 pounds is suspended :
this rope, marked 1, is passed under the
moveable pulley 4, and it is evident that it
will sustain 8 pounds, 4 pounds being sup-
ported by each rope. The next rope, marked
2, passing under the moveable pulley B, in
like manner supports 16 pounds, or 8 pounds
on each side. The remaining cord, marked
3, passing under the moveable pulley C, supports 32
pounds, or 16 pounds on each side. Thus, 4 pounds at
P will support 32 pounds at W. If, instead of 3 ropes
and 3 moveable pulleys, there be 4 of each, then 4
pounds at P would support 64 pounds at W' ; and so on
in the same proportion, as it is obvious that each rope
which is added to such a system will double its effect.
The power of this system may be greatly increased by
substituting small fixed pulleys for hooks, as in fig. 120,
In this case, the rope, instead of being _Fig. 120,
attached to a hook, passes over the
fixed pulley, and is fastened to the
moveable pulley. Each moveable pul-
ley, therefore, instead of being sus-
tained by the equal tensions of two
cords, is sustained by the equal ten-
sions of three, so that the temsion of
the second rope is three times that of
the first, which is equal to the power.
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The tension of the third is three times that of the second,
or nine times that of the first, and so on, the weight
being three times the tension of the last rope; therefore
4 pounds at P will support 108 pounds at W.

An arrangement of pulleys is repre- Fig. 121,
sented in the annexed figure (121), by
which each rope, instead of being finally
attached to a fixed point, as in fig. 120,
is attached to the weight itself. AB
are two moveable pulleys, and C a
fixed pulley ; a rope passing over the
fixed pulley C is attached by one of
its extremities to a bar bearing the
weight W, and by the other to the
sheaf of the moveable pulley B, over
which passes a second cord attached in
a similar manner to the bar, and carrying a third pulley
A. The weight is' in this case supported by three
ropes ; one stretched with a force equal to the power,
another with a force equal to twice the  Fig. 122,
power, and a third with a force equal
to four times the power. The weight
is therefore in this case seven times the
power, or 4 pounds at P would sup-
port 28 pounds at W,

Such a system may be rendered much
more powerful if the ropes, instead of p»
being attached to the bar which sus-
tains the weight, as in fig. 121, be made
to pass through wheels, as in the annexed
figure (122), and be finally attached to
the pulleys above. In the present example, 4 pounds
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at P will support 104 at W, the weight being 26
times the power.

In considering these various combinations of pulleys,
we have not taken into account the weights of the pul-
leys themselves. It is necessary, however, to observe,
that in the two last examples, figs. 121 and 122, the
weight of the pulleys assists the power in supporting the
weight; and in figs. 119 and 120, the weight of the
pulleys acts against the power. In the system called

the Spanish Bartons, fig. 118, the weights of the pul-
leys to a certain extent neutralise each other.
It will in all cases be found that the pulley, like the
lever and all other machines, obeys the principle of virtual
velocities. For instance, let one of the ends of g 193
a rope be fastened to a hook B (fig. 123); if B
then we suppose the rope to be passed under a ﬂf’
moveable pulley C, to which a weight W is
attached, and the power to be applied at the cl
other end of the rope P, it is clear that, in ,
order to raise the weight W 1 foat, each rope
sustaining the pulley together with the weight, must be
shortened 1 foot,—that is, to raise the weight 1 foot, the
power must move through 2 feet, and therefore the velo-
city of the power is twice that of the weight. In the
same manner it may be proved that in fig. 107, where a
power of 1 supports a weight of 3, if the power descends
through 3 feet, the rope which is attached to the pulley
supporting the weight must be shortened 3 feet, and
therefore each of the three parts of the rope attached to
the pulley will be shortened by 1 foot. In this case the
velocity of the power is three times that of the weight.
The same principle is equally applicable to all the sys-
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tems of pulleys above mentioned. In other words, when
the power and weight balance each other in any system
of pulleys, the power multiplied by the space through
which it moves will be equal to the weight multiplied by
the space through which it moves. This mechanical ad-
vantage which the pulley appears in theory to possess
is much diminished in practice, as considerable allowance
must be made for the friction of the cord, and of the
pivots or axes on which the pulley turns: in most cases
it is calculated that no less than two-thirds of the power
is lost. F'riction, however, in any system of pulleys
may be considerably diminished by adopting an inge-
nious contrivance of Mr Garnet, called friction rollers.
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CHAPTER X.
THE INCLINED PLANE.

THE inclined plane is the most simple of the mechanical
powers. It consists of a plane surface supposed to be
perfectly hard, forming some angle with a horizontal
plane; the inclination of the plane may be to any ex-
tent, from that of a slight rise of the horizontal to almost
an upright or perpendicular ascent. When a man has
occasion to place a heavy barrel in a cart, if the barrel
be too heavy for him to lift, he makes use of the inclined
plane, which in this case would be a stout plank, one
end resting on the cart and the other on the ground;
the barrel is then pushed before him up the plank and
into the cart. Itis evident that the shorter this inclined
plane is, the steeper is the ascent; and the longer it is,
the ascent must be easier. 'We know from experience
that it is much easier to push a rolling weight up a hill
that riges gently, than up a hill that is very steep. Sup-
pose the barrel to weigh 500 pounds: if no machinery
is used, it will require a power equal to 500 pounds to
raise it into the cart ; but if it be rolled up the inclined
plane, the power required will be less than 500 pounds,
and the diminution of power depends on the smallness
of elevation in the inclined plane. But this saving of
power, as in all other instances of mechanical advantage,
is accomplished only by a corresponding loss of time.
The advantage gained by this mechanical power is just
as much as the lengtk of the plane exceeds its perpen-
dicular keight. In the annexed figure (124) let AB
represent a horizontal plane, and B¢ another plane in-
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clined to it; let AB¢ be its angle of Fig. 194,
elevation, and W a weight placed
upon it. If the plane be twice as
long as it is high,—that is, if the
length of the plane B¢ be double the
height from 4 to ¢c,—then 4 pounds
at P will balance 8 pounds anywhere between B and c.
It is evident that if the plane Bc were lengthened, and
the height A to ¢ remain the same, that a less power
than 4 pounds at P would sustain a weight of 8 pounds
anywhere between B and ¢. From this explanation it may
easily be inferred, that the less the elevation of the plane
is, the less will be the power necessary to sustain a given
weight upon it. In the same figure the inclined plane
Bec is supposed to turn upon a hinge at B; it may
therefore be heightened or depressed so that its angle
of elevation may be increased or diminished, which is
shewn by the graduated arch G.

This property of the inclined plane will be more
readily understood by an application of the principle of

the composition and resolution of Fig. 125.
forces. In the annexed figure (125) w
let P be the power acting in the di-

rection WA, parallel to the inclined 2

plane, and sustaining a weight W; ¢

draw CW perpendicular to A B, WD D
parallel to AC, and CD parallel to the inclined plane
AB. Now the forces acting on W and keeping it in
equilibrium are the power P in the direction WA, the
weight of the body in the vertical direction WD, and
the action of the plane in the direction CW perpendi-
cular to the plane. Now it may be readily seen from

K2

B



132 THE INCLINED PLANE.

the demonstration of the parallelogram of force, that if
three forces acting in directions parallel to the sides of a
triangle keep a body in equilibrium, these forces are pro-
portional to the sides of the triangle. The power P will
therefore be in the same proportion to the weight W
as WA is to WD, or as WA is to AC, or as AC is to
AB. Thus, if the height of the plane be 1 foot, and its
length 20 feet, a force of 1 pound will sustain a weight
upon it of 20 pounds.

When it is said that the weight is sustained by the
power, it must not be inferred that the wkols weight
presses upon the power, but only that the power keeps
the weight from rolling down the plane. The entire
weight is sustained partly by the power, and partly by
the plane; and the power is relieved of as much of the
weight as is sustained by the plane. The less the
angle of inclination of the plane is, the less weight is
sustained by the power, and the more by the plane;
and so on the contrary.

‘When a body is rolled up an inclined plane, friction,
as well as the gravity of the body, has to be overcome;
the latter giving it a tendency to roll down to the lowest
level, the plane hindering it from descending in a direct
line to the earth. We have already observed in treat-
ing of gravity, p. 38, that a body descending to the
earth by the force of its own gravity falls about 16} feet
in the first second ; but if it be rolled down an inclined
plane, the number of feet it will roll down in the first
second will be equal to the number of feet of inclination
in 16} feet : thus if the inclination be 3 feet in 16}, the
body will roll down 3 feet in the first second, and so on.

If the power, instead of acting in a direction parallel
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to the inclined ‘plane, acts in an obligus direction, as
WD, fig. 126, the proportion of the power to the weight
may be found in a similar manner to that in fig. 125, by
drawing WC perpendicular to the plane 4L, WE per-
pendicular to the horizon, and EC Fig. 1%6.
parallel to WD; for the two forces B D
represented by WD, WE, will be
proportional to the forces P, /¥ respec-
tively, and these two forces may be
compounded into the diagonal W(C, L Z
which represents the pressure on the

plane. If we suppose the plane removed, and ‘another
power applied in the direction WB, this power repre-
sented by R, if it keep the body W at rest, will repre-
sent the reaction of the plane. In this case the body W
is kept at rest by three forces ; lst, the force of gravity
W acting in the vertical direction WE ; 2nd, the power
P acting in the direction WD ; and 3rd, the resistance
R of the plane, acting in the direction #B perpendicular
to the plane. If the power act in a horizontal direction,
or parallel to the base of the plane, its proportion to-the
weight will be that of the height of Fig. 127.

RO P

c

the plane to the base. In the fol- 4
lowing figure (127)* let W be the w_~
weight, and D the power, acting in NP
the direction WD parallel to the ; 5 ¢

base-; the proportion of the power

to the weight may be found in the same manner as in
the preceding example. On this principle it will be seen
that the power D will be to the weight # as WD is to

* In this figure the line C W should have been draw-n perpendi-
cular to B A—its present position ig incorrect.
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WP, or as AC'is to BC, the keight of the plane fo its
base.

From these examples it will be readily seen, that
when the power is in a direction parallel to the plane
(as in fig. 125), it acts to the greatest advantage; for
if the power act in an obliqus direction, as in fig. 126,
it is evident that a part of the power is employed in
lifting the weight from the plane; if it act in a di-
rection delow the plane (parallel to the base), as in
fig. 127, a part of the power is employed in pressing
the weight against the plane; but if it act in a direction
parallel to the plane, the whols effect of the power is
employed in drawing the weight up the plane; which
is not the case when acting in a direction either above or
below the plane, & part only being employed.

Sometimes a weight upon one inclined plane is raised
or supported by another weight upon another inclined
plane; in this case their proportion will be that of the

lengths of the planes on which ¥ig. 1”-0

they rest. Fig. 128 represents P w

two inclined planes of the same A

height, but different inclinations 4 B
W and P are two weights resting on the planes, and
connected by a cord passing over a pulley C. If the
length of the longer plane from 4 to C' be 2 feet,
and the length of the shorter plane from B to C be
1 foot, then 4 pounds at W on the short plane will
balance 8 pounds at P on the long one, and so on in
the sdme proportion. This method of moving loads on
two adjoining inclined planes is frequently applied in
great public works, where various sloping rail-roads
are used: a loaded waggon descends one inclined plane,
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and is made to draw up another waggon either empty
or loaded on the other.

The principle of virtual velocities may be easily ap-
plied to the inclined plane. It will be seen from the
following example, that if two forces balance each other
on an inclined plane, and the whole be put in motion,
the power multiplied by the space through which it is
moved is equal to the weight multiplied by the space
through which it ascends vertically. Fig. 138.

Let AB, fig. 129, be the inclined p g

plane, W a weight at the foot B of &,
the plane, and P the power at the ¢ o
top. Then if the power be pulled B
downwards until the weight arrives

at the top of the plane, # will have 2

been raised through a space equal to the Aeight of the
plane, while P will have moved through a space equal
to the length of the rope which has passed over the
pulley,~—that is, the length of the plane.. Hence P
maultiplied by the space through which it moves is equal
to W multiplied by the space through which it ascends
vertically. Thus, if the height of the plane be 1 foot, and
its length 50 feet, the weight of /# 50 pounds, and that
of P 1 pound; then P will have to descend 50 feet while
W is raised vertically through the space of 1 foot. In the
inclined plane, therefore, as in every other mechanical
power, velocity is lost in proportion as power is gained.

The inclination of a road is estimated by the height
corresponding to some given length ; thus a road is said
to rise 1 foot in 20, when 20 feet of the road are taken
a8 the length of an inclined plane, and the correspond-
ing height 1 foot. A horse in drawing a cart up a hill,
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fig. 130, which rises Fig. 130.
1 foot in 20, has the
advantage of pulling
only one-twentieth
of the weight; for, although the cart is pulled to a
distance of 20 feet, it is raised upwards only 1 foot.

If a plane be 64 feet in height, and 3 times 64, or
192 feet in length, 2 marble will roll down it in 6
seconds; for by the attraction of gravity it will fall to
the earth in 2 seconds, because 16 feet (the space through
which it will fall in the first second) multiplied by the
square of 2 seconds, or 4, produce a product of 64, the
height of the plane ; but as the plane is 3 times as long
as it is high, it must. be 3 times as many seconds in
rolling down the plane,—that is, 6 seconds®.

The power of inclined planes or hills may therefore in
all cases be found by a simple rule of proportion ; as for
example, if it is desired to know what force will balance
a weight of 3756 pounds upon an inclined plane which
rises 6 feet in 15 feet of its length, the proportion will
stand thus—as 15 feet : 6 feet :: 3756 pounds to a fourth
term 150 pounds, which when found will be the answer
required. To calculate what force the above weight of
375 pounds will halance or support upon & similar in-
clined plane, the proportion must be reversed, thus, as
6 feet : 15 feet :: 150 pounds to 376 pounds; and from

* In the above example the effect of rofation upon bodies de.
scending an inclined plane is not taken into consideration. The
times of actual descent vary according to the different shapes of
bodies, as cylinders or spheres, and whether they be solid or hollow ;
but this is a subject of too intricate a nature to be treated of in this

elementary work. The advanced student is referred to Whewell’s
¢ Mechanics,” and Poisson, ¢ Mécanique.”
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the proportion that holds good in all triangles of similar
shape, it matters not how small a portion of the hill or
inclined plane be taken to examine its power, provided
its surface be an even plane ; for the line WP, fig. 127,
will be the half of the length B, in the same way that
AQC is half the length of the entire surface 4B. Either
a large or small portion of an inclined plane may there-
fore be taken to examine its power, provided the rise or
elevation that occurs in that part only be taken into
account ; and this rise in actual hills is best ascertained
by the levelling instrument.

A fixed inclined plane is often used in assisting the
elevation of great weights by means of other machines :
it is supposed that in all the edifices of remote antiquity,
where great masses of stone were employed, as in the
pyramids of Egypt and the Druidical temples of this
country, these vast blocks were elevated on inclined
planes of earth or of scaffolding, with the assistance of
levers and rollers. When a hill is too steep to be readily
ascended, the road is either made to wind round the
ascent or to advance in a zig-zag direction. The strain
upon a horse in drawing a cart up a steep hill may be
considerably diminished by leading him from one side of
the road to the other, and thus advancing up the hill in.
a zig-zag direction instead of leading him directly for-
ward. Inclined planes are frequently used for drawing
boats out of one canal into another, and for wheeling
barrows to the higher stage of scaffolding. All stairs or
flights of steps are inclined planes, broken into successive
steps for the purpose of affording a safer footing than
could be obtained if the plane were not so divided. It
is also used to produce gradual descent, as in the case of

a ship launched into or drawn from the water.
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CHAPTER XI.
THE WEDGE.

THE wedge is called, in mathematical language, ¥ 131
a Triangular Prism : it consists of a solid body
of wood, iron, or some other material, and is
generally used in cleaving timber, in which case
its edge is introduced into a cleft already made
to receive it, as in fig. 131; and it is urged by
the force of a hammer or mallet striking perpen-
dicularly on its back. In the annexed figure
(132) DA is the whole thickness of the Fig. 132.
wedge at its back ABGD, where the D
power is applied ; EF is the depth or B
height of the wedge; BF the length of
one of its sides; and OF is its sharp
edge. It is evident that the wedge 0
represented in fig. 131 will run more
easily between any two bodies than that represented in
fig. 132; but, on the other hand, it will make a much
less separation than the other, which enters with more
difficulty. The smaller wedge, fig. 131, would product
a less effect, but would meet with less resistance ; the
larger one, fig. 132, would produce a greater effect, but
would be resisted more. In calculating the mechanical
efficacy of the wedge, the following rule is employed.
The power is to each of the resistances as the width of
the back is to one of its sides ; but it is difficult to cal-
culate the exact proportion of the effect to the resistance,
as much depends on the force or number of blows which
may be applied, and likewise the varied nature of the
resistance ; tough wood, such as oak, requiring more
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force to split it than deal. A wedge of great inclination
or obliquity would require considerable force to urge it
forwards, for the same reason that a plane much inclined
requires much force to roll a heavy body up it. If the
angularity of the wedge were given, and the exact force
of each blow ascertained, it would still be difficult to
compute the power of the wedge in ordinary cases. In
the splitting of timber and stone, for instance, the divided
parts act as levers, and assist in opening a passage for
the wedge, which circumstance necessarily increases its
power. The theory of the wedge has not been here
introduced, as it requires the aid of mathematical reason-
ing, and is quite inapplicable to practical purposes.

" There is scarcely any instrument whose applications
are more numerous than those of the wedge: chisels,
nails; awls, needles, axes, sabres, &c. all act on the prin-
ciple of the wedge. It is also used in a variety of cases
where the other mechanical powers would be of no
avail. This arises from its being driven principally by
impact ; the momentum of the blow is consequently
much greater in comparison to the application of pres-
sure to the lever. As an example of the enormous power
of the wedge, it may be stated that the largest ships
when in dock may be easily lifted up by driving wedges
under their keels. It has sometimes happened that
buildings,—such as a heavy chimney for a furnace,—
have been found to incline, owing to the dampness of the
foundation, and have been restored to their perpendicular
position by wedges driven under one side. It is some-
times used in splitting rocks, which it would be impos-
sible to effect by the lever, wheel and axle, or pulley;
for the force of the blow or stroke shakes the cohering



140 THE WEDGE.

parts, and makes them separate more easily. In-some
parts of Derbyshire, where mill-stones are obtained from
the silicious sand-rocks, wedges made of dry wood are
driven into holes bored round the piece of rock intended
to be separated from the mass: these wedges gradually
swell by the moisture of the earth, and in a day or two
lift up the mill-stone without breaking it. Builders, in
raising their scaffolds, always tighten the ropes round
their scaffolding-poles by means of wedges driven be-
tween the cords and the poles.

A knife may be considered as a wedge when employed
in splitting ; but if the edge be examined with a micro-
scope, it is seen to be a fine saw, as is evident from the
much greater effect all knives produce by being drawn
along the materials against which they are applied, than
what would have followed from a direct action of the
edge.

It appears from the results of some experiments made
in the dockyard at Portsmouth, on the comparative
effect of driving and pressing in large iron and copper
bolts, that a man of medium strength, striking with a
mall weighing 18 pounds, and having a handle 44 inches
in length, could start or drive a bolt about one-eighth
of an inch at each blow, and that it required the direct
pressure of 107 tons to press the same bolt through that
space ; but it was found that a small additional weight
would press the bolt completely home*.

* Encyclopedia Metropolitana, ¢ Mixed Sciences,” vol. vi.
p. 52. .
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CHAPTER XII.

THE SCREW.

TaE screw cannot properly be called a simple ma-
chine, because it is seldom used without the application
of a lever or winch to assist in turning it; and then it
becomes a compound engine of very great force, either
in pressing the parts of bodies closer together, or in
raising great weights. The screw may be considered as
a modification of the inclined plane, which may be seen
by cutting a piece of paper Fig. 13, Fig. 134.
4, fig. 133, into the form of B
an inclined plane and rolling Aﬂp E
it round the cylinder D ; its
edge B-will then represent the spiral line called the
thread of the screw. Fig. 134 represents the paper
when wound tight round the cylinder. In the applica-
tion of the screw, the weight or resistance is not, as in
the inclined plane and wedge, placed upon the surface
of the plane or thread. The power is transmitted by
means of another screw, called the nut, through which
it passes. The nut consists of a concave cylinder, on
the interior surface of which a spiral groove is cut, which
exactly fits the thread of the screw. Inorder  Fig. 13
that the effect of the power may be con-
veyed to the resistance by means of this ma-
chine, either the nut or the screw must be
fixed. If the nut be fixed, the screw may
be continually turned round by a lever in-
serted in one end of it till it reaches its ex-
tremity ; and if the screw be fixed, the nut may be
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turned round it by means of a lever until it be moved
from the bottom of the screw to the top. Fig. 135 repre-
sents the nut A to be fixed. If the screw be turned to
the right, it will advance downwards, while the nut is
stationary. Fig. 136 represents the Fig. s‘”’
scrow to be fixed; while the nut WV, S
by being turned by the lever L from

left to right will advance down the

screw. In calculating the advantage

gained by the screw, there are two

things to be taken into consideration,

the circumference of the cylinder round which the screw
is cut, and the distance between the threads of the
screw. It is evident that the winch must turn the
cylinder once round before the weight or resistance can
be transmitted from one spiral winding to another;
therefore, a8 much as the circumference of a circle
described by the handle of the winch is greater than
the interval or distance between the spirals, so much is
the force of the screw.

Hence it appears that the longer the winch is, and
the nearer the spirals are to one another, so much the
greater i8 the force of the screw; therefore, to increase
the mechanical efficacy of the machine, we must either
increase the length of the lever by which the power
acts, or diminish the distance between the spirals. For
instance, if there be two screws, the circumferences of
whose cylinders are equal to one another, but one having
the threads 1 inch apart, and the other 3 inches apart,
it will readily be seen, on considering the principle of
the inclined plane, that the screw having the threads
only 1 inch apart will have three times the advantage
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of the screw whose threads are 3 inches apart. As we
have already shewn that if the Aeight of two inclined
planes be the same, but the base of one three times
greater than that of the other, the mechanical advantage
gained by the longer base would be three times more
than that gained by the other, but at the same time the
process of rising to a given height would be slower; in
applying this principle to the screw, it is obvious that
the screw having threads 1 inch apart must be turned
round three times as often as that having threads three
inches apart, to go through the same space; therefore,
as space is passed, or time lost in proportion to the
advantage gained, we conclude that three times more
advantage is gained by the former than by the latter
screw. .

The power of the screw only, without the application
of the lever, may be found by the following rule :—* As
the circumference of the screw is to the distance between
the threads, so is the weight to the power ;” but as this
machine is seldom worked without the lever, the cir-
cumference which the outer end of the lever describes is
taken instead of the circumference of the screw itself.
In estimating the true effect of the screw in connection
with the lever, we must multiply the circumference
which the lever describes by the power. Thus: “The
power multiplied by the circumference which it describes
is equal to the weight or resistance multiplied by the
distance between the two contiguous threads.”

- If then we know the length of the lever, the distance
between the threads, and the weight to be raised, we
can readily calculate the power; or, if it be required to
know the amount of weight the screw will raise, we
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have only to ascertain the power, the distance of the
threads, and the length of the lever. Let us now cal-
culate the advantage gained by a screw, the threads of
which are half an inch distant from one another, and
the lever 6 feet long. If the radius of a circle be given,
in order to find the circumference we must multiply the
radius by 6,—the circumference is a little -more than
6 times the radius; but as this will answer all common
purposes, we will call it just 6 times. The lever being
6 feet in length, the circumference of the circle made by
its revolution will be 6 feet multiplied by 6, which is
36 feet or 432 inches; but during this revolution the
screw is raised only half an inch, therefore the space
passed by the moving power will be 864 times greater
than that gone through by the weight; consequently the
advantage gained is 864, or 1 pound applied to the
lever will balance 864 pounds acting against the screw.
Hence it follows that there are two ways of increasing
the mechanical advantage of the screw; either by in-
creasing the length of the lever by which it is turned, or
by diminishing the distance between the threads. Let
us now suppose the threads of the screw so fine as to be
only one quarter of an inch apart, and that the length
of the lever be 10 feet, or 120 inches ; the circumference
of the circle made by this lever will be 10 x 6, which is
60 feet, or 720 inches, or 2,880 quarter inches; and as
the elevation of the screw is but one quarter of an inch,
the power will move through a space 2,880 times greater
than that moved through by the weight; therefore a
power of 1 pound acting at the end of the lever will
raise 2,880 pounds. Itis necessary, however, to observe,
that the friction of the parts of a screw is so great, that
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in practice its effect is far less than the theory would
lead us to expect, as a third of the amount of power is
generally required to be added to overcome the friction
of the machine,

Of all the mechanical powers, the screw is the best
calculated to produce great pressure accompanied with
continuous action, and a retention of the pressure: the
action of the lever alters continually, and the pressure is
intermittent ; but the screw acts
continually, with the same pres-
sure, in the same direction, and
always rétains its hold.

The annexed figure (137) is a
representation of the standing
press used by bookbinders for
pressing their books, which is a
good example of the screw when
used to produce a great pressure.

The screw is turned by means of a lever fixed across
the top; to the lower end of the screw is attached a
pressing-table C'; so that Fig. 138.
when the screw is turned =
in one direction, a pres- [
sure is exerted upon the I : J
books placed on.the fixed :
plate S, which pressure
may be immediately re-
moved by turning the n
screw in the opposite di- S
rection. In this example
the nut is fixed, being in N
the cross-beam A. In the __
following illustration (fig. ol

L
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138) the screw is fixed, and the nu# is moveable. The
board D, moveable between the sides of the frame, is
urged by the screw OB, which is capable of moving
either upwards or downwards, but incapable of re-
volving. The nut z, worked by the lever L, is capable
of revolving, but does not advance in the direction of.
the screw. Every complete revolution of the nut urges
the screw upward through a space equal to the distance
between two contiguous threads.

It has already been observed, that in the screw the
weight which can be supported by a given power depends
upon the proportion between the circumference which
the power describes, and the distance between two con-
tiguous threads of the screw. Hence it is evident that
the mechanical advantage of the screw may be increased
by lengthening the lever by which the power acts, or by
cutting the threads sufficiently fine; but, although there
is no limit in theory to the increase of this mechanical
advantage by these means, yet it is often practically in-
convenient to increase the length of the lever; for the
space through which the power should act would be too
great for practical purposes; and, on the other hand, if
the threads of the screw be cut too fine, they become too
weak to support the required pressure. To obviate this
inconvenience, an ingenious contrivance has been in-
vented by Mr. Hunter, similar in principle to the wheel
and axle, p. 100, where one part of the axle is thicker
than the other, so as to enable a very small force to
sustain a very large one. This contrivance consists in
the combination of two screws, one of which works
within the other. The mechanical power of such a screw
does not depend upon the actual distances between the

threads of the two screws of which it s composed, but
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upon the difference of those distances. Hence, therefore,

the threads may have any strength and magnitude, pro-

vided they do not greatly differ in thickness from each

other. Fig. 139 is a representation Fig. 1®.

of this machine. KL is the greater

screw playing in the fixed nut N.

This screw is hollowed out, the in-

terior of which is a nut correspond-

ing with an ezternal screw cut upon

the smaller cylinder M, and attached

to the sliding press B. During

every revolution of the screw, the

cylinder KZ descends through a

space equal to the distance between its threads. At the

same time the smaller cylinder A ascends through a

space equal to the distance between the threads cut upon

it; and the combined effect will be, that the smaller

screw M, and the sliding board B, to which it is at-

tached, will be moved downwards through a space equal

to the difference of the distances between the threads of

the two screws. If the threads of the two screws were

perfectly equal, and the screw KL were turned round

by a power applied to the lever #, the sliding board B

would retain its position ; for the larger screw would be

moved downwards just as much as the smaller screw

would be raised upwards ; but if the distance between

the threads in the smaller screw M is rather less than

that in the larger screw KZ, the sliding board B will be

pressed downwards in each revolution of the lever #

through a space equal to the difference of the distance

between two threads in KL and two threads in M. It

is clear, therefore, that the effect of this machine is the
L2
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same as if a simple screw were used, in which the dis-
tance between the threads is equal to the difference of
the distances between the threads of the two screws, and
therefore the power will be to the weight as the difference
of the distances between the threads of the screws is to
the circumference described by the power at #. From
the above illustration, it will readily be seen that the
mechanical advantage of this machine is increased by
diminishing the difference of the distance between the
threads of the screws*.

Sometimes the thread of the screw, instead of urging
forward the nut, is made to act upon the teeth of a
wheel, as in fig. 140. The screw is Fig. 140.
in this case called an endless screw,
because its action upon the wheel
may be continued without limit. In
this machine there is a combination
of two mechanical powers—the screw,
and the wheel and axle. Let S re-
present a screw cut upon a horizontal spindle 4, work-
ing in the teeth of the wheel W, and let P be the
winch to which the power is applied. The distance
between any two threads of the screw must exactly
correspond with the width of one of the teeth of the
wheel ; so that a complete revolution of the screw is
necessary to move the circumference of the wheel
through a distance equal to one only of its cogs. If
the wheel W consists of sixteen teeth, it is evident that
for every time the spindle A, and the screw S, are
turned round by the winch P, the wheel # will be
moved one tooth by the screw ; and therefore, in sixteen

® ¢ Easy lessons in Mechanics.” J. W. Parker.

AL NP
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revolutions of the winch, the wheel # will be turned
once round.

The uses of the screw are innumerable. It is used
in coining where the impression of a die is to be made
upon a piece of metal. It is also employed in taking
off copper-plate prints, and for printing in general. By
its aid a large bale of cotton is condensed into a small
package, and, from being the lightest and most buoyant
of substances, becomes dense enough to sink in water.
Sometimes buildings are raised from an inclined to a
vertical position, by means of a small screw, acted upon
by a comparatively small force. It is also of great
utility in astronomical calculations, by affording an easy
and very exact method of measuring or subdividing
small spaces. An ordinary screw will divide an inch
into five thousand parts; but the fine hardened steel
screws which are applied to the limbs of astronomical
instruments will go much further. In this case it is
called a Micrometer Screw, from the Greek words
Mixpos, little, and Mérpov, a measure. The gimlet and
auger are examples of the screw, both of which may
be considered as an inclined plane wrapped round a cone
instead of a cylinder. The power of these instruments
is very much increased by their terminating in a point.
‘When liquids or juices are to be expressed from vege-
tables or fruit, the screw is generally used. The cyder-
press is an example of this machine so applied; and
in all cases where great pressure is required, the power
of the screw is often employed.

It is not unfrequently used in flour-mills for pushing
the flour which comes from the mill-stones to the end
of a long trough, from which it is conveyed to other
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parts of the machinery, in order to undergo the re-
maining process. In this case, the spiral threads are
very large in proportion to the cylinder on which they
are fixed.

A common corksorew is the thread of the screw
without the spindle, and is used, not to correct op-
posing forces, but merely to enter and fix itself in the
cork. Complicated corkscrews are now made, which
draw the cork by the action of a second screw, or of
a toothed rod or rack and pimion.
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CHAPTER XIIL
FRICTION.

WE have already observed that in calculating the
effects of mechanical contrivances a considerable allow-
-ance must be made for the friction of the moving parts
on each other; but as the effect of friction on machinery
is an important point of consideration, it has been
thought necessary to treat of the subject in a separate
chapter.

Friction is the effect produced by the surface of one
body moving or tending to move upon the surface of
another, for although the surfaces of bodies may appear
.smooth, there are nevertheless in all cases small asperi-
ties spread over them ; and therefore when two surfaces
are in contact, the small projections or roughnesses of
the one fall into ‘the cavities of the other, and thus tend
to impede motion. The friction of the varions parts
of machines occasioned by roughness of the contiguous
surfaces, is generally increased in time by the iron be-
coming rusty, the wood soft and rotten, and the ropes
hard and stiff. Old hinges of doors, or window-shutters,
which have not been stirred or opened for a long time,
move stiffly on account of the friction occasioned by
rust. In like manner, if we have occasion to open a
rusty lock with a rusty key, we find it difficult to
overcome the resistance the key meets with in turning
through the wards. Screws of any kind that have been
unused for a long time are generally turned with great
difficulty.



152 FRICTION.

The friction of one piece of iron, wood, brick, stone,
&c. on another piece of the same substance has been
measured by making the second piece an inclined plane,
and then gradually lifting one end of it until the upper
mass began to slide: the inclination of the plane, just
before the sliding commences, is called the angle of
repose.

The following means are used to diminish friction
between rubbing surfaces, and either singly or in com-
bination, according to circumstances.

1. Making the rubbing surfaces smooth; but this
must be done within certain limits, for great smooth-
ness allows the bodies to approach so near that a degree
of cohesion takes place.

2. Letting the substances which are to rub on each
other be of different kinds. Axles are made of steel,
for instance, and the parts on which they bear are made
of brass: in small machines, as time-keepers, the steel
axles often play in agate or diamond. The swiftness
of a skaiter depends much on the great dissimilarity
between steel and ice.

3. Interposing some lubricating substance between
the rubbing parts; as oils for the metals, soap, grease,
black-lead, &c. for the wood. There is a laughable
illustration of the tendency which soap or grease has
to obviate friction in the holiday sport of soaping a
lively pig’s tail, and offering him as the prize of the
clever fellow who can catch and hold him fast by his
slippery appendix.

4. Diminishing the extent of the touching surfaces,
as in making the rubbing axis of a wheel very small.

5. Using wheels, as in wheel carriages, instead of
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-dragging a load along the ground. Casters on house-
hold furniture are miniature wheels.

6. Using what are called friction wheels; which
still further diminish the friction even of a smooth axis,
by allowing it to rest on their cir- Fig. M1
cumferences, which turn with it. In a
the annexed figure (141), @ represents ga
the end of an axis, and 4 and ¢ two ——
friction wheels, on which it rests.

7. Placing the thing to be moved on rollers or balls,
as when a log of wood is drawn along the ground upon
rounded pieces of wood, or when a cannon, with a flat
circular base to its carriage, turns round by rolling on
cannon balls laid on a hard level bed. In these two
cases there is hardly any friction, and the resistance is
merely from the obstacles which the rollers or balls will
-have to pass over. Of all rubbing parts the joints of
animals are those which have the least friction, con-
sidering the strength, frequency, and rapidity of their
movements. We study and admire the perfection found
in them, without being able very closely to imitate them.

‘Wheel carriages illustrate many of the circumstances
connected with friction; but as a detailed explanation
of them would be too extended for an elementary work
like the present, the reader is referred to a very interest-
ing chapter on the subject in Dr. Amott’s Elements of
Physics, from which the greater part of the above re-
marks have been taken.

It will be readily inferred from the preceding observa-
tions, that the resistance from friction depends on the
roughness of the surface and the force of the pressure.
When the surfaces are the same, a double pressure will
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produce a double amount of friction; a treble pressure
a treble amount of friction ; and so on.

It has been found by experiment that the resistance
arising from friction does not at all depend on the extent
of the surface of contact; but if the nature of the sur-
faces and the amount of pressure remain the same, this
resistance will be equal whether the surfaces which move
one upon the other be great or small; for example, if
the moving body be a flat block of wood, the face of
which is equal to 4 inches square, and the edge to a
quarter of an inch square, it will be subject to the same
amount of friction, whether it move upon its broad face
or upon its narrow edge. This will be obvious from
the following calculation :—Let us suppose the weight
of the block to be 4 ounces ; when it rests upon its face,
a pressure to this amount acts upon a surface of 16 square
inches, so that a pressure of a quarter of an ounce acts
upon each square inch. The total resistance arising from
friction will therefore be 16 times that resistance which
would be produced by a surface of 1 square inch under
a pressure of a quarter of an ounce. Now, suppose the
block placed upon its edge, there is then a pressure of
4 ounces,—that is, 16 quarter ounces upon a surface
.equal to a quarter of an inch square. But it has been
already shewn, that when the surface is the same, the
friction must increase in proportion to the pressure.
Hence we infer that the friction produced in the present
instance is 16 times the friction which would be pro-
duced by a pressure of a quarter of an ounce acting on
one square inch of surface, which is the same resistance
as that which the body was proved to be subject to
when resting on its face.
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The laws of friction may Fig. 142.
be illustrated by the follow- P
ing experiments :—Upon a 4
horizontal plane 4, fig. 142,
let a small carriage B be
placed, having a cord at-
tached to it, and carried parallel to the plane over a
wheel at P; a very trifling weight suspended to the
end of the cord will be found sufficient to move the
carriage -along the plane. If, instead of the carriage,
a block of wood be substituted of the same weight, and
having a rough surface of green baize, it will be found
that a greater weight will be required to move this
along the plane than was required for the carriage. The
weight in both cases is equivalent to the amougt of
friction. Again, let the weight of the block of wood
be doubled by placing upon it a weight equal to its
own weight. The pressure will now be doubled, and
it will be found that the former weight suspended to
the cord will be quite inadequate to overcome the fric-
tion; but if another weight be added just sufficient to
overcome the friction as before, it will be seen that the
whole weight necessary to produce this effect is exactly
twice the weight which produced it in the former case.
Thus it appears that a double amount of pressure pro-
duces a double amount of friction.

The laws of friction may be further Fig. 143,
illustrated by the aid of the inclined
plane. Let the block of wood W,
fig. 143, be placed upon a plane 4B, B e
which is hinged to an horizontal plane CB, so that it
can be raised to any proposed elevation. Let the plane

A
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AB be slowly raised until it acquires such an elevation
that the force of the body down the plane is just suf-
ficient to overcome the friction, and that the body will
therefore commence to move. The tendency of the block
W to descend upon A B will bear the same proportion
to its entire weight as the perpendicular’ AC bears to
the length of the plane 4B. Thus, if the length AB
be 12 inches, and the height AC be 3 inches,—that is,
a fourth part of the length,—then the tendency of the
weight to move down the plane is equal to a fourth
part of its whole amount. If the weight wese 12 ounces,
and the surfaces perfectly smooth, a force of 3 ounces
acting up the plane would be necessary to prevent the
descent of the weight. It need scarcely be remarked
that all the mechanical powers are subject to friction,
and, as before observed, allowance must be made in
calculating the effects produced by them; but some
‘machines are necessarily subject to less friction than
others, on account of the surfaces in contact being few.

The lever is subject to little friction, as it balances
round a point in theory, and a very small surface in
practice.

The pulley is subject to friction from the ropes passing
over the blocks, and the axles turning about the centres;
for the last reason it is thought necessary to have pulleys
as large as convenient, because in a large pulley the rope
acts at a greater distance from the centre where the fric-
tion is, and consequently has the greater tendency to
overcome it.

The wheel is subject to friction by its pressing with
all its own weight and that of the weight it sustains
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upon its supports, although this inconvenience may be
much lessened by proper contrivances.

In the inclined plane great allowance must be made
for the effect of friction, which must materially modify
any calculation as to the advantage it affords.

The wedge and screw are both subject to a great deal
- of friction ; the moving surfaces being contiguous, more
care is required in keeping these machines in order.



EXPLANATION OF SCIENTIFIC TERMS.

ACCELERATION, the increase of velocity in moving bodies.
When this increase is equal in equal times, it is called
uniformly accelerated motion.

AnoLE, the inclination of two lines meeting together in a
point. Angles in Geometry are called right, acute, and
obtuse. A right angle contains 90 degrees; acufe angles
less, and obtuse angles more than 90 degrees.

ATTRACTION OF GRAVITATION, see GRAVITY.

BaLANCE, a lever turning on a pivot or fulcrum, and used
for the purpose of weighing different bodies.

CENTRE oF GRAvVITY, that point in a body from which if the
body could be suspended, all the parts of the body would,
in any situation, balance each other.

CentrIFUGAL Force is that force by which a body in moving
round a centre tends to recede from that centre.

CenTRIPETAL ForcE is that force by which a body tends
towards some point as a centre.

CIRCUMFERENCE, the curve line which bounds a circle. The
circumference of every circle is supposed to be divided
into 360 parts, called degrees. ’

ComposiTion AND REsoLurion oF Forces: when we substi-
tute for a single force two or more forces, of which it is
the resultant, the process is called the Resolution of force,
and the contrary process the Compositian of force.

ConE, a solid figure, having a circle for its base, and its top
terminated in a point or vertex.

DracoNar, a right line drawn across a quadrilateral figure

from one angle to another.
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D1AMETER, a right line passing through the centre of a circle,
and terminated at each side by the circumference.

Dynanics, that division of the science of Mechanics which
treats of the motion of bodies.

EquiLBrium : when two or more forces acting in a body

" keep that body at rest, these forces are said to be in equi-
librio, which signifies equally balanced.

Force is the name of any exertion which produces or tends
to produce & change in the state of a body, either by
moving that body when at rest, or by stopping or changing
its progress if already in motion.

FrictioN, the rubbing of the surfaces of bodies upon one
another. In calculating the effects of machinery, allow-
ance must always be made for friction.

FuLcruy, the prop or support by which a lever is sustained.

GRAvITY is a term given to that tendency which all bodies
have to fall to the centre of the earth.

HorizonTaL, any thing which is®on a level with, or parallel
to, the horizon. Thus we say a horizontal plane.

IMPULSE, the direct action of one body upon another in the
production of motion.

INERTIA, or Inmactivity, is that property of matter which
causes it to continue in the same state, either of rest or of
uniform motion in a right line, unless changed by some
external force.

Marrer is the general name of every substance that has
length, breadth, and thickness.

MonmenT: the product of a force and the distance of its
direction from a given point is called the moment of the
Jorce with respect to that point.

MoumenTUM, the impetus or force of a moving body, which
is always equal to the quantity of matter multiplied into
the velocity.
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Moriox is the moving of a body, or any parts of a body,
from one place to another.

OsciLLATION is & term applied to the vibration of a pen-
dulum.

ParaBoLa, a figure arising from the section of a cone when
cut by a planc parallel to one of its sides.

PARALLEL LiNEs: when two straight lines in the same
plane are everywhere equidistant from each other, they
are said to be parallel.

ParaLLELOGRAM, a four-sided - right-lined figure, whose
opposite sides are parallel to each other.

PEercussion, a shock or stroke given by a moving body.

PERPENDICULAR, a line falling directly on another line, so
as to make equal angles on each side.

Power denotes any force, which, being applied to a machine,
tends to produce motion.

Rab1us, a right line drawn from the centre to the circum-
ference of a circle.

Resistance denotes in general any power which acts in an
opposite direction to another, so as to destroy or lessen its
effects. .

ResurtanT Force is the force which arises from combining.
or compounding two or more forces into one.

SraTics is that division of the science of Mechanics which
treats of the powers which preserve bodies in a state of
rest.

TriANGLE, & figure of three sides and three angles.

VEvocity is the rate at which a body moves, and is reck-
oned by the number of units of length passed overina
unit of time.

THE END.
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